

SEMESTER-V

BSC. (HONS.) BOTANY

DISCIPLINE SPECIFIC CORE COURSE – 13: Molecular Biology of the Cell

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Molecular Biology of the Cell – DSC 13	4	2	0	2	Class XII pass with Biology/ Biotechnology	Nil

Learning Objective:

- To gain comprehensive knowledge about of genetic material, central dogma, genetic code, DNA replication, transcription, modification of transcript, translation and regulation of gene expression.

Learning Outcomes: At the end of this course the student will understand:

1. structure and function of nucleic acids at molecular level.
2. the concept of central dogma and genetic code.
3. molecular details of DNA replication and its types.
4. cellular processes of transcription and translation including modification of transcripts and polypeptides/proteins
5. mechanisms regulating gene expression.

Unit 1: Nucleic acids as carriers of genetic information **02 Hours**
Discovery of nucleic acids, Experiments that established nucleic acids (DNA & RNA) as the carrier of genetic information: Griffith's, Hershey & Chase, Avery, McLeod & McCarty, and Fraenkel-Conrat's experiment.

Unit 2: Structure and organisation of the genetic material **03 Hours**
DNA double helix structure (Chargaff's rule; Watson and Crick model); salient features of DNA double helix. Types of DNA: A, B & Z conformations, denaturation and renaturation (only melting profile- Tm), types of RNA (mRNA, rRNA, tRNA, small RNAs). split genes (Phillip Sharp)

Unit 3: Central Dogma and Genetic Code **04 Hours**

Beadle and Tatum's one gene one enzyme hypothesis; The Central Dogma, Genetic code and its salient features, Experiments for deciphering Genetic code (Experiments by Nirenberg &Matthaei, and Har Gobind Khorana). Adaptor hypothesis by Crick; Baltimore and Temin's discovery of reverse transcription

Unit 4: Replication of DNA 06 Hours

Delbrück's Dispersive mechanism model; Bloch and Butler's conservative replication model; Meselson and Stahl's semi-conservative replication model; Mechanism - initiation, elongation and termination; Enzymes and other proteins involved in DNA replication; General principles – bidirectional, semiconservative and semi-discontinuous replication (Replisome), RNA priming (Primase &Primosome); Various modes of DNA replication, including rolling circle, θ (theta) mode of replication, replication of linear dsDNA. Replication of the 5'end of linear chromosome (end-replication problem & Telomerase).

Unit 5: Mechanism of Transcription 05 Hours

Transcription process in prokaryotes (Initiation, Elongation and Termination); structure and function of RNA polymerase enzyme; concept of promoters and transcription factors; comparison between prokaryotic and eukaryotic transcription; concept of post-transcriptional modifications (introduction to eukaryotic mRNA processing: 5' capping; Splicing and alternative splicing; 3' poly A tailing).

Unit 6: Mechanism of Translation 05 Hours

Translation in prokaryotes: Initiation, Elongation and Termination; concept of charging of tRNA and role of aminoacyl synthetases; ribosome structure and assembly (prokaryotes and eukaryotes); comparison between prokaryotic and eukaryotic translation; post-translational modifications (phosphorylation, glycosylation).

Unit 7: Gene Regulation 05 Hours

Gene regulation in prokaryotes: Operon concept; inducible & repressible systems; regulation of lactose metabolism in *E. coli* (inducible system, positive & negative control); regulation of tryptophan synthesis (Repression-De-repression and concept of Attenuation) in *E. coli*. Gene regulation in eukaryotes: concept of gene silencing by DNA methylation and RNA interference.

Practicals 60 hours

1. Isolation of plasmid and genomic DNA from *E. coli* and quantification using agarose gel electrophoresis
2. Isolation of genomic DNA from plant samples (atleast two different genera / species) using CTAB method and quantification using agarose gel electrophoresis
3. Quantification of unknown DNA by diphenylamine reagent (colorimetry).

4. To estimate the generation time of *Escherichia coli* (prokaryote) and budding yeast (eukaryote) by spectrophotometric measurement and plotting growth curve as an indirect method to study DNA replication
5. To study control of replication in budding yeast with the help of specific inhibitors (beta-lactams:-Clavulanic acid, Ceftazidime, Piperacillin, Ceftriaxone etc) and studying budding frequency.
6. To study control of transcription in *Escherichia coli* with the help of prokaryotic (Rifampicin) and eukaryotic (Actinomycin-D) transcription inhibitors and plotting growth curve
7. To study control of translation in *Escherichia coli* with the help of prokaryotic (Kanamycin / Streptomycin) inhibitors using an IPTG-inducible system.
8. To understand the regulation of lactose (*lac*) operon (positive & negative regulation) and tryptophan (*trp*) operon (Repression and De-repression & Attenuation) through digital resources/data sets.

Suggestive readings:

1. William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino, & Darrell Killian (2019). Concepts of Genetics. Pearson; 12th edition.
2. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
3. Snustad, D.P. and Simmons, M.J. (2019). Principles of Genetics. John Wiley, 7th edition.
4. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.

Additional Resources:

1. Griffiths, A.J.F., John Doebley J., Peichel, C., Wassarman D.A. (2020). Introduction to Genetic Analysis. W H Freeman & Co; 12th edition
2. Micklos D A., Freyer G.A. (2003) DNA Science: A First Course (2nd Edition), Cold Spring Harbor Laboratory; Greg A., CSHL Press, USA

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE – 14: Reproductive Biology of Angiosperms

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Reproductive Biology of Angiosperms – DSC 14	4	2	0	2	Class XII pass with Biology/ Biotechnology	Nil

Learning Objectives:

- To understand the scope of reproductive biology, development and structure of male and female reproductive units of the flower, organization of male and female gametophytes, pre-fertilization, fertilization and post-fertilization events.
- To understand the processes and significance of pollen--pistil interactions, apomixis and polyembryony.
- Significance of seed as a diaspore.

Learning Outcomes:

Upon completion of the course, the students will become familiar with:

- The significance and scope of reproductive biological studies in crop production and conservation. Structure and function of anther and ovule, male and female gametophyte.
- The significance of associations of MGU, FGU and double fertilization; embryo and endosperm development, genomic imprinting.
- Pollination and seed dispersal mechanisms, apomixis and polyembryony as alternate pathways of angiosperm reproduction.
- Experiential learning through field trips, scientific photography, videography and documentary preparation. The students will also learn to write scientific reports and present scientific data.

Unit 1: Introduction

01 Hour

Introduction about Reproductive biology and its scope; significant contributors to the field; structure of flower.

Unit 2: Anther and Pollen

05 Hours

Anther wall: Structure and functions, microsporogenesis, microgametogenesis; Pollen wall: Structure and functions, Number Position Character (NPC), pollen viability and storage, Male Germ Unit (MGU) – structure and significance.

Unit 3: Pistil

04 Hours

General structure and types of pistil and ovules; megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of *Polygonum* type); Organization and ultrastructure of mature embryo sac; cell specification; Female Germ Unit – structure and significance.

Unit 4: Pollination 04 Hours

Types (Self, cross, geitonogamy, xenogamy), significance; Structure of the stigma and style; Pollen-pistil interactions- capture, adhesion, hydration, pollen tube penetration; Path of pollen tube in the pistil; Role of synergids in pollen tube attraction; Double fertilization; Polytubey block

Unit 5: Self-Incompatibility 04 Hours

Basic concepts (interspecific, intraspecific, homomorphic, heteromorphic, GSI and SSI); Methods to overcome self-incompatibility (in brief): mixed-pollination, intraovarian and in vitro pollination and fertilization, modification of stigma surface, parasexual hybridization.

Unit 6: Endosperm 02 Hours

Types (2 examples each), development, structure and functions; Genomic imprinting

Unit 7: Embryo 04 Hours

General pattern and comparison of development of dicot and monocot embryo (initial apical cell and basal cell polarity, globular embryo with radial polarity, mature embryo); Suspensor: structure and functions; Embryo-endosperm relationship; Nutrition of embryo, haustorial systems: Embryo patterning.

Unit 8: Seed 02 Hours

Structure and importance of seed as diaspore, as storage organ; germination and seedling formation.

Units 9: Polyembryony and apomixis 02 Hours

Introduction, types, causes and applications.

Unit 10. Applications of Reproductive biology 02 Hours

Haploid embryos - concept and significance; crop productivity, conservation

Practicals 60 hours

- Anther: Wall and its ontogeny, tapetum (amoeboid and glandular), Microspore mother cell, spore tetrads, uninucleate, bicelled and dehisced anther; Temporary stained mounts of T.S. anther to study the organization.
- Pollen: General morphology, pseudomonads, polyads, pollinia (slides/digital resources, fresh material); Ultrastructure of pollen wall (micrograph); Pollen viability: tetrazolium test/FDA; Germination: calculation of percentage germination in different media using hanging drop/sitting method.
- Temporary mounts of pollen grains cleared with 1N HCl/KOH to study germ pores; Ultrastructure of male germ unit (MGU) through micrographs.

- Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous, unitegmic, bitegmic; tenuinucellate and crassinucellate; Special structures: endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/digital resources).
Female gametophyte: developmental sequence of monosporic embryo sac only; Ultrastructure of Female Germ Unit.
- Pollination: Adaptations; bagging experiment; **project on pollination.
- Intra-ovarian pollination; Test tube pollination (through digital resources).
- Endosperm: Dissections of developing seeds for endosperm with free-nuclear haustoria.
- Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.
- Seed dispersal mechanisms (adaptations through live specimens), **project on seed dispersal

** The projects can be on pollination/ seed dispersal or on any other topic based on the syllabus. It can be a write-up with visuals. The students can also make a digital project submission in the form of a documentary of 5-10 min.

Suggested Readings:

- Bhojwani S.S., Bhatnagar S.P. & Dantu P.K. (2015). The Embryology of Angiosperms, 6th Edition. By VIKAS PUBLISHING HOUSE. ISBN: 978-93259-8129-4.
- P. Maheshwari, (2004). An introduction to the embryology of Angiosperms. Tata McGraw-Hill Edition, ISBN: 0-07-099434-X.
- Johri, B.M. (1984). Embryology of Angiosperms. Netherlands: Springer-Verlag. ISBN: 13:978-3-642-69304-5
- Raghavan, V. (2000). Developmental Biology of Flowering plants. Netherlands: Springer. ISBN: 978-1-4612-7054-6.
- Shivanna, K.R. (2003). Pollen Biology and Biotechnology. New Delhi, Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.
- Mangla, Y., Khanduri, P., Gupta, C.K. 2022. Reproductive Biology of Angiosperms: Concepts and Methods. Cambridge University Press ISBN 978-1-009-16040-7.
- Tandon R, Shivanna KR, Koul M. Reproductive Ecology of Flowering Plants: Patterns and Processes 1st ed. 2020 Edition ISBN 978-9811542091. Springer Verlag
- Kapoor, R., Kaur, I. Koul M. 2016. Plant Reproductive Biology and Conservation IK International Publishing House Ltd. India ISBN: 9789382332909

Additional Resources:

- Shivanna, K.R., Tandon, R. (2020). Reproductive Ecology of Flowering Plants: A Manual. Springer (India) Pvt. Ltd. New Delhi, Heidelberg, New York, Dordrecht, London
- Shivanna, K. R., & Rangaswamy, N. S. (2012). *Pollen biology: a laboratory manual.* Springer Science & Business Media.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE – 15: Plant Physiology

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Plant Physiology – DSC 15	4	2	0	2	Class XII pass with Biology/ Biotechnology	Nil

Learning objective:

7. To introduce the basic principles of plant structure and function and its application in related fields.

Learning outcomes: On completion of the course the students will be able to:

8. understand the structure and function of plants
9. comprehend and compare various tissue systems in plants and their role
10. realise the importance of water, soil and atmosphere in the life of organisms
11. appreciate the ability of plants to sense the environment and adapt
12. interpret and evaluate the significance of regulator molecules in controlling life forms
13. apply the principles of plant physiology to solve problems in related fields

Unit 1: Plant-water relations

04 Hours

Water potential and its components, water absorption by roots, water movement via symplast, apoplast and aquaporins, root pressure, guttation, ascent of sap, cohesion-tension theory, transpiration, factors affecting transpiration, anti-transpirants

Unit 2: Mineral nutrition

04 Hours

Essential and beneficial elements, macro- and micro-elements, criteria for essentiality, roles of essential elements, chelating agents, phytosiderophores, mineral nutrition in hydroponics and aeroponics.

Unit 3: Nutrient uptake

05 Hours

Transport of ions across cell membrane, passive absorption, simple and facilitated diffusion (carrier and channel proteins), Fick's law, active absorption, proton ATPase pump, electrochemical gradient, ion flux, uniport, co-transport (symport, antiport)

Unit 4: Translocation in the phloem

03 Hours

Composition of phloem sap, phloem loading and unloading, Pressure-Flow Model, source-sink relationship

Unit 5: Plant growth regulators **08 Hours**
Chemical nature (basic structure, precursor), physiological roles, bioassays and applications of Auxins, Gibberellins, Cytokinins, Abscisic Acid, Ethylene; Other growth regulators - Jasmonic Acid, Brassinosteroids, Nitric Oxide. Mechanism of action of Auxin. Introduction to interactions among plant growth regulators.

Unit 6: Physiology of photo-sensory molecules **03 Hours**
Discovery, chemical nature, mode of action and role of phytochrome, cryptochrome and phototropin in photomorphogenesis

Unit 7: Physiology of flowering **02 Hours**
Concept of florigen, photoperiodism, CO-FT Model of flowering, vernalization.

Unit 8: Seed dormancy **01 hour**
Seed dormancy -causes and methods to induce and/or overcome dormancy

Practicals **60 Hours**

9. Determination of osmotic potential of plant cell sap by plasmolytic method.
10. Determination of water potential of potato tuber cells by weight method.
11. Determination of water potential of potato tuber cells by falling drop method.
12. Study of effect of light on the rate of transpiration in excised leafy twig.
13. Calculation of stomatal index and stomatal frequency from the lower surface of leaves of a mesophyte and a xerophyte.
14. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and a xerophyte (lower surface).
15. To study the effect of different concentrations of ABA on stomatal closure.
16. To study the effect of light and dark on seed germination.
17. To study induction of amylase activity in germinating barley grains.
18. To study the effect of ethylene on fruit ripening.
19. To study the effect of auxin on rooting.

Suggested Readings:

6. Hopkins, W. G., Huner, N. P. A. (2009). Introduction to Plant Physiology, 4th edition. New Delhi, Delhi: Wiley India Pvt. Ltd.
7. Taiz, L., Zeiger, E., Moller, I. M., Murphy, A. (2018). Plant Physiology and Development, 6th edition. New York, NY: Oxford University Press, Sinauer Associates.
8. Kochhar, S.L., Gujral, S.K. (2020). Plant Physiology: Theory and Applications. New Delhi, Delhi: Foundation Books, 2ndEdn. Cambridge University Press India Pvt, Ltd.

Additional Resources:

- Bajracharya, D. (1999). Experiments in Plant Physiology: A Laboratory Manual. New Delhi, Delhi: Narosa Publishing House.
- Bhatla, S.C., Lal, M.A. (2018). Plant Physiology, Development and Metabolism. Singapore: Springer Nature, Singapore Pvt. Ltd.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.