

GENERIC ELECTIVES (GE-13): Plant Biotechnology

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Cred its	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutoria l	Practical / Practice		
Plant Biotechnology GE-13	4	2	0	2	Class XII pass	Nil

Learning Objective

To give students knowledge of techniques used in plant biotechnology and its applications.

Learning Outcomes:

After completion of this course, students will be able to:

- understand the basic concepts, principles, and methods in plant biotechnology.
- will be able to explain the usage of the acquired knowledge in biotechnological, pharmaceutical, medical, ecological, and agricultural applications.

Unit 1: Introduction and Scope of Plant Biotechnology **2 hours**

Historical perspective, Current paradigms in plant biotechnology, GM crops, International/National institutions

Unit 2: Plant Tissue Culture **10 hours**

Plasticity and Totipotency of plant cells – why and how do plants grow from a single cell; Nutrient media and role of vitamins and hormones. Regeneration of plants in the laboratory: Direct and indirect organogenesis, somatic embryogenesis; Brief account of micropropagation, haploids, triploids and cybrids and their applications; artificial seeds

Unit 3: Cloning and transformation techniques **10 hours**

What is cloning?; Restriction and modifying enzymes, plasmids as cloning vehicles, Transformation of bacterial cells, selection of transformants and clones – antibiotic selection, blue-white selection; How do we make transgenic plants: *Agrobacterium*-mediated transformation, Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment. Selection of transgenic plants - selectable marker and reporter genes (Luciferase, GUS, GFP).

Unit 4: Applications **8 hours**

Applications of transgenic plants in enhancing crop productivity: Pest resistant (Bt-cotton, Bt Brinjal) and herbicide resistant plants (Round Up Ready soybean);

Transgenic crops with improved quality traits (FlavrSavr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug), Edible vaccines; Genetically engineered products - Human Growth Hormone and Humulin; Transgenic plants and their role in understanding plant biology, Biosafety regulations for transgenic plants.

Practicals	60 hours
-------------------	-----------------

1. a. Preparation of Murashige & Skoog's (MS) medium.
b. Demonstration of in vitro sterilization and inoculation methods using leaf and nodal explants of *Nicotiana* / *Datura* / *Brassica*.
2. Study anther, embryo, endosperm culture, micropropagation and somatic embryogenesis (photographs/slides).
3. Study isolation of protoplasts and production of artificial seeds.
4. Study methods of gene transfer: *Agrobacterium*-mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment (through digital resources).
5. Study various steps of genetic engineering for production of *Bt*cotton, Golden rice, Flavr Savr tomato.
6. Plasmid and genomic DNA isolation, Restriction digestion and agarose gel electrophoresis of DNA.
7. Visit to a plant tissue culture / Biotechnology laboratory and to submit a field report.

Suggested Readings:

1. Bhojwani, S.S., Bhatnagar, S.P. (2015). The Embryology of Angiosperms, 6th edition. New Delhi, Delhi: Vikas Publication House Pvt. Ltd.
2. Bhojwani, S.S., Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Amsterdam, Netherlands: Elsevier Science.
3. Newmann, Karl-Hermann (2020). Plant Cell and Tissue Culture: A Tool in Biotechnology, 2nd Edition {Springer}
4. Glick, B.R., Pasternak, J.J. (2022). Molecular Biotechnology Principles and Applications of Recombinant DNA, 6th Edition. Washington, U.S.: ASM Press.
5. Stewart, C.N. Jr. (2016). Plant Biotechnology and Genetics: Principles, Techniques and Applications, 2nd Edition. New Jersey, U.S.: John Wiley & Sons Inc.

Additional Resources:

1. Razdan, M. K. (2019). Introduction to Plant Tissue Culture, 3rd Edition {CBS / Oxford & IBH}
2. Singh, B. D. (2022). Plant Biotechnology, Delhi, Medtech

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.