

GENERIC ELECTIVES (GE-14): Plant Tissue Culture

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Plant Tissue Culture GE-14	4	2	0	2	Class XII pass	Nil

Learning Objectives

To give students knowledge of techniques used in plant tissue culture and its applications.

Learning Outcomes

The successful students will be able to:

- learn the basic concepts, principles and processes in plant cell and tissue culture.
- understand the use of tissue culture techniques in plant improvement.
- apply the concepts and principles of plant cell and tissue culture in biotechnological and agricultural fields.
- become an entrepreneur by establishing their own plant tissue culture lab.

Unit 1 Introduction 3 hours

Historical perspective, Important contributions of Haberlandt, White, Reinert & Steward, Murashige, Skoog, Cocking, Guha & Maheshwari, Morrel & Martin.

Terminologies: Cell culture, organ culture, explant, callus, totipotency, plasticity, regeneration, somaclonal variants.

Unit 2 Types and composition of Media 4 hours

Role of nutrients, vitamins, hormones and supplements in nutrient medium. Composition of MS and White medium.

Unit 3 Techniques of Plant Tissue Culture 4 hours

Collection of plant material, sterilization of tissue (maintenance of aseptic conditions by use of autoclave and laminar flow chamber), filter sterilization, inoculation.

Unit 4 Protoplast culture 5 hours

Protoplast isolation (mechanical and enzymatic), culture, purification (viability test) and fusion (spontaneous, induced), selection of fused protoplasts, applications.

Unit 5 Micropagation 5 hours

Selection of plant material and suitable explant, methodology, plant regeneration pathways-somatic embryogenesis, organogenesis, difference between somatic and zygotic embryos.

Unit 6 Tissue culture applications **9 hours**
Anther culture, Production of haploids, triploids and cybrids, artificial seeds (production & advantages), embryo rescue, virus elimination, secondary metabolite production; Cryopreservation; Germplasm conservation. Novel sources of variation.

Practicals **60 hours**

1. To study the equipment used in tissue culture: autoclave and laminar air flow chamber.
2. Preparation of Murashige & Skoog's (MS) medium.
3. Demonstration of sterilization and inoculation methods using leaf and nodal explants of tobacco, carrot, *Datura*, *Brassica* etc. (any two).
4. Study of anther, embryo and endosperm culture.
5. Study of micropropagation, somatic embryogenesis & artificial seeds.
6. Isolation of protoplasts.
7. Visit to a plant tissue culture laboratory and submission of field report.

Suggested Readings:

1. Bhojwani, S.S. (1990). Plant Tissue Culture: Applications and Limitations {Elsevier}
2. Bhojwani, S.S, Bhatnagar, S.P. (2015). The Embryology of Angiosperms, 6th edition. New Delhi, Delhi: Vikas Publication House Pvt. Ltd.
3. Bhojwani, S. S. and Dantu, P. K. (2013). Plant Tissue Culture: An Introductory Text Springer
4. Bhojwani, S. S. and Razdan, M. K. (1996). Plant Tissue Culture: Theory and Practice, Revised Edition, Elsevier
5. Newmann, Karl-Hermann (2020). Plant Cell and Tissue Culture: A Tool in Biotechnology, 2nd Edition Springer

Additional Resources:

1. Park, Sunghun (2021). Plant Tissue Culture: Techniques and Experiments, 4th Edition Elsevier
2. Razdan, M. K. (2019). Introduction to Plant Tissue Culture, 3rd Edition CBS / Oxford & IBH
3. Smith, R. H. (2013). Plant Tissue Culture: Techniques and Experiments, 3rd Edition {Elsevier}
4. Stewart, C. Neal (2016). Plant Biotechnology and Genetics, 2nd Edition Wiley-Blackwell
5. Trigiano, R. N. (2011). Plant Tissue Culture, Development, and Biotechnology CRC Press

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.