

DSE Courses of B.Sc. (Hons) Mathematics, Semester-VII

DISCIPLINE SPECIFIC ELECTIVE COURSE – 5(i): ADVANCED DIFFERENTIAL EQUATIONS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Advanced Differential Equations	4	3	1	0	Class XII pass with Mathematics	Multivariate Calculus, Ordinary and Partial Differential Equations

Learning Objectives: The main objective of this course is to:

- Study the existence, uniqueness, and stability of solutions of IVPs, to explore the solution of system of linear equations.
- Study Green's function and its applications in boundary value problems, Eigenvalues and Eigenfunctions of Sturm Liouville systems.
- Investigate the solutions and applications of Laplace, wave, and diffusion equations.

Learning Outcomes: This course will enable the students to find the:

- Existence, uniqueness, and continuity of solutions of IVPs.
- Properties of zeros of solutions of linear second order ODE's.
- Green's function of a BVP and its applications.
- Eigenvalues and eigenfunctions of Sturm-Liouville systems.
- Solutions of Laplace, wave, and diffusion equations with their applications.

SYLLABUS OF DSE-5(i)

UNIT – I: Existence and Uniqueness for Initial-Value Problems (15 hours)

Well posed problems, Picard's existence theorem, uniqueness and continuity theorems for initial value problems of first order; Existence and uniqueness theorems for systems and higher order IVPs; Sturm separation and comparison theorems; Homogeneous linear systems, Nonhomogeneous linear systems, Linear systems with constant coefficients.

UNIT – II: Stability Theory and Boundary-Value Problems (10 hours)

Stability of autonomous system of differential equations, Critical point of an autonomous system and their classification, Stability of linear systems with constant coefficients, Linear plane autonomous systems, Perturbed systems; Two-point boundary-value problem, Green's functions and their construction; Sturm-Liouville systems, Eigenvalues and Eigenfunctions.

UNIT – III: Laplace, Wave and Diffusion Equations with Applications (20 hours)

Laplace's equation, Boundary value problems, Maximum and minimum principles, Uniqueness of solution and their continuous dependence on boundary data, Solution of the Dirichlet and Neumann problem for a half plane by Fourier transform method, Theory of Green's function for Laplace's equation in three dimension and application in solution of Dirichlet and Neumann problem for semi-infinite spaces; Wave equation, Helmholtz's first and second theorems, Theory of Green's function for wave equation and its applications; Diffusion equation, Solution of initial boundary value problems for diffusion equation, Green's function for diffusion equation and its applications.

Essential Readings

1. Myint-U, Tyn (1978). Ordinary Differential Equations. Elsevier, North-Holland, Inc.
2. Ross S. L. (2007). Differential Equations (2nd ed.) John Wiley & Sons. India.
3. Sneddon Ian N. (2006). Elements of Partial Differential Equations. Dover Publications.

Suggestive Readings

- Coddington, E. A. (2012). An Introduction to Ordinary Differential Equations. Dover Publications.
- Amaranath T. (2023). An Elementary Course in Partial Differential Equations (3rd ed.). Narosa Publishing House.
- McOwen, Robert C. (2003). Partial Differential Equations, Pearson Education.

DISCIPLINE SPECIFIC ELECTIVE COURSE – 5(ii): DYNAMICAL SYSTEMS**CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Dynamical Systems	4	3	1	0	Class XII pass with Mathematics	Calculus, Differential Equations, Linear Algebra, Metric spaces

Learning Objectives: Primary objective of this course is to introduce:

- The fundamental concepts of dynamical systems and emphasize on its study through several applications.
- The concepts of the periodic points, hyperbolicity and chaos explained through examples.
- Symbolic dynamics which help to represent and understand various dynamical systems.