

UNIT – III: Case Studies**(15 hours)**

Sample Cases: Continuous casting, Water filtration, Factory fires, Irrigation.

Essential Readings

1. Fulford, Glenn R., and Broadbridge, Philip (2002). Industrial Mathematics: Case Studies. Cambridge University Press.
2. Kheir, Naim A. (Ed.). (1996). Systems Modeling and Computer Simulation, CRC Press.
3. Lathi, B.P., and Ding, Zhi (2019). Modern Digital and Analog Communication Systems (5th ed.). Oxford University Press.

Suggestive Readings

- Friedman A., and Littman W. (1994). Industrial Mathematics: A Course in Solving Real-World Problems. SIAM (Society for Industrial and Applied Mathematics).
- Kreyszig, Erwin (2011). Advance Engineering Mathematics (10th ed.). John Wiley & Sons.
- MacCluer, Charles R. (2000). Industrial Mathematics: Modeling in Industry, Science, and Government. Prentice Hall, Inc.

Practical (30 hours)- Practical/Lab work using:

Mathematica/MATLAB/SciLab/C/C++/Python/R/FORTRAN or similar as per availability.

1. Use following methods to study, describe, and evaluate continuous/discrete systems:
 - (a) Root locus method.
 - (b) Routh-Horowitz criterion.
 - (c) Transfer function using Laplace transform.
 - (d) z-transform to convert continuous systems to equivalent discrete systems.
2. To apply controllability and observability analysis on a system description, using corresponding tools/libraries available.
3. To represent a signal/wave as vector data (sampling, choosing basis, and checking orthogonality).
4. To convolve and deconvolve signal/wave functions and represent the result as graphs.

Case Studies:

Besides reading the mentioned case-studies, ONE case may be chosen (in consultation with the instructor) as Semester Assignment for a brief similar study and analysis.

**DISCIPLINE SPECIFIC ELECTIVE COURSE – 6(iv):
GEOMETRY OF CURVES AND SURFACES**
CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Geometry of Curves and Surfaces	4	3	1	0	Class XII pass with Mathematics	Calculus

Learning Objectives: The main objective of this course is to:

- Introduces the concept of curves and surfaces in Euclidean spaces \mathbb{R}^n .
- Study of the curves and surfaces via the tools of calculus and introduction of concepts like first and second fundamental forms, curvatures, and differential forms.
- Complete the celebrated Gauss-Bonnet theorem that establishes a connection between curvature of a geometric object with its topology.

Learning Outcomes: This course will enable the students to:

- Understand the concept of curves and surfaces embedded in the Euclidean spaces \mathbb{R}^n .
- Compute the curvature and torsion for a curve in the space.
- Understand the concept of differential forms and their integration.
- Make sense of the infinitesimal distance element via the study of the Riemannian metric.
- Get prepared to venture into further study of modern differential geometry of manifolds.

SYLLABUS OF DSE-6(iv)

UNIT – I: Geometry of Curves (15 hours)

Concept of plane and space curves with examples, Parametrized plane and space-curves, Concepts of curvatures for curves, Frenet-Serret's formula for space curves, Global theorems for plane and space curves.

UNIT – II: Local Theory of Surfaces in the Space (15 hours)

Concept of surfaces in the space with examples, Fundamental forms and curvatures with examples, Orthonormal frames, Exterior differential forms in two variables and their uses.

UNIT – III: Geometry of Surfaces (15 hours)

Riemannian metric on a surface, Vector fields, Covariant derivatives, Concept of geodesic, Integration of exterior differential forms, Gauss-Bonnet theorem.

Essential Reading

1. Kobayashi, Shoshichi (2019). Differential Geometry of Curves and Surfaces. Springer Nature Singapore Pte Ltd. <https://doi.org/10.1007/978-981-15-1739-6>

Suggestive Readings

- Abbena Elsa, Salamon Simon, and Gray Alfred (2006). Modern Differential Geometry of Curves and Surfaces with Mathematica (3rd ed.). CRC Press.
- Carmo, Manfredo P. Do (2016). Differential Geometry of Curves and Surfaces (Revised and Updated Second Edition). Dover Publications.
- Pressley, Andrew (2010). Elementary Differential Geometry (2nd ed.). Springer-Verlag.
- Tapp, Kristopher (2016). Differential Geometry of Curves and Surfaces. Springer.