

B.Sc. (Hons) Mathematics, Semester-IV, DSE-Courses

DISCIPLINE SPECIFIC ELECTIVE COURSE – 2(i): BIOMATHEMATICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Biomathematics	4	3	1	0	Class XII pass with Mathematics	DSC-6: Ordinary Differential Equations

Learning Objectives: The main objective of this course is to:

- Develop and analyse the models of the biological phenomenon with emphasis on population growth and predator-prey models.
- Interpret first-order autonomous systems of nonlinear differential equations using the Poincaré phase plane.
- Apply the basic concepts of probability to understand molecular evolution and genetics.

Learning Outcomes: This course will enable the students to:

- To learn and appreciate study of long-term behavior arising naturally in study of mathematical models and their impact on society at large.
- To understand spread of epidemic technically through various models and impact of recurrence phenomena.
- Learn what properties like Chaos and bifurcation means through various examples and their impact in Bio-Sciences.

SYLLABUS OF DSE-2(i)

UNIT – I: Mathematical Modeling for Biological Processes (15 hours)

Formulation a model through data, A continuous population growth model, Long-term behavior and equilibrium states, The Verhulst model for discrete population growth, Administration of drugs, Differential equation of chemical process and predator-prey model (Function response: Types I, II and III).

UNIT – II: Epidemic Model: Formulation and Analysis (15 hours)

Introduction to infectious disease, The SIS, SIR and SEIR models of the spread of an epidemic, Analyzing equilibrium states, Phase plane analysis, Stability of equilibrium points, Classifying the equilibrium state; Local stability, Limit cycles, Poincaré-Bendixson theorem.

UNIT – III: Bifurcation, Chaos and Modeling Molecular Evolution (15 hours)

Bifurcation, Bifurcation of a limit cycle, Discrete bifurcation and period-doubling, Chaos,

Stability of limit cycles, Introduction of the Poincaré plane; Modeling molecular evolution: Matrix models of base substitutions for DNA sequences, Jukes-Cantor and Kimura models, Phylogenetic distances.

Essential Readings

1. Robeva, Raina S., et al. (2008). An Invitation to Biomathematics. Academic press.
2. Jones, D. S., Plank, M. J., & Sleeman, B. D. (2009). Differential Equations and Mathematical Biology (2nd ed.). CRC Press, Taylor & Francis Group.
3. Allman, Elizabeth S., & Rhodes, John A. (2004). Mathematical Models in Biology: An Introduction. Cambridge University Press.

Suggestive Readings

- Linda J. S. Allen (2007). An Introduction to Mathematical Biology. Pearson Education.
- Murray, J. D. (2002). Mathematical Biology: An Introduction (3rd ed.). Springer.
- Shonkwiler, Ronald W., & Herod, James. (2009). Mathematical Biology: An Introduction with Maple and MATLAB (2nd ed.). Springer.

DISCIPLINE SPECIFIC ELECTIVE COURSE – 2(ii): MATHEMATICAL MODELING

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Mathematical Modeling	4	3	0	1	Class XII pass with Mathematics	DSC-6: Ordinary Differential Equations

Learning Objectives: Primary objective of this course is to introduce:

- Mathematical modeling as the representation of a system by a set of mathematical relations or equations.
- Mathematical epidemiological models susceptible-infectious-recovered (SIR) and its variant SEIR (S-Exposed-IR) for the spread of diseases.
- Monte Carlo simulation techniques, and simplex method for solving linear programming problems.

Learning Outcomes: This course will enable the students to:

- Understand the methodology of solving SIR models for disease spread.
- Learn significance of dieting model that provides important insights and guides to a biomedical issue that is of interest to the general public.
- Understand nonlinear systems and phenomena with stability analysis ranges from phase plane analysis to ecological and mechanical systems.