

Stability of limit cycles, Introduction of the Poincaré plane; Modeling molecular evolution: Matrix models of base substitutions for DNA sequences, Jukes-Cantor and Kimura models, Phylogenetic distances.

Essential Readings

1. Robeva, Raina S., et al. (2008). An Invitation to Biomathematics. Academic press.
2. Jones, D. S., Plank, M. J., & Sleeman, B. D. (2009). Differential Equations and Mathematical Biology (2nd ed.). CRC Press, Taylor & Francis Group.
3. Allman, Elizabeth S., & Rhodes, John A. (2004). Mathematical Models in Biology: An Introduction. Cambridge University Press.

Suggestive Readings

- Linda J. S. Allen (2007). An Introduction to Mathematical Biology. Pearson Education.
- Murray, J. D. (2002). Mathematical Biology: An Introduction (3rd ed.). Springer.
- Shonkwiler, Ronald W., & Herod, James. (2009). Mathematical Biology: An Introduction with Maple and MATLAB (2nd ed.). Springer.

DISCIPLINE SPECIFIC ELECTIVE COURSE – 2(ii): MATHEMATICAL MODELING

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Mathematical Modeling	4	3	0	1	Class XII pass with Mathematics	DSC-6: Ordinary Differential Equations

Learning Objectives: Primary objective of this course is to introduce:

- Mathematical modeling as the representation of a system by a set of mathematical relations or equations.
- Mathematical epidemiological models susceptible-infectious-recovered (SIR) and its variant SEIR (S-Exposed-IR) for the spread of diseases.
- Monte Carlo simulation techniques, and simplex method for solving linear programming problems.

Learning Outcomes: This course will enable the students to:

- Understand the methodology of solving SIR models for disease spread.
- Learn significance of dieting model that provides important insights and guides to a biomedical issue that is of interest to the general public.
- Understand nonlinear systems and phenomena with stability analysis ranges from phase plane analysis to ecological and mechanical systems.

- Use Monte Carlo simulation technique to approximate area under a given curve, and volume under a given surface.

SYLLABUS OF DSE-2(ii)

UNIT – I: Mathematical Epidemiological and Dieting Models (15 hours)

Modeling concepts and examples, Scaling of variables, and approximations of functions; SIR and SEIR models for disease spread: Methodology, Standard and solvable SIR models, Basic reproduction number; Dieting model with analysis and approximate solutions.

UNIT – II: Modeling with Nonlinear Systems and Phenomena (15 hours)

Stability and the phase plane, Almost linear systems; Ecological models: Predators and competitors, Critical points, Oscillating populations, Survival of single species, Peaceful coexistence of two species, Interaction of logistic populations, Wildlife conservation preserve; Nonlinear mechanical systems: Hard and soft spring oscillations, Damped nonlinear vibrations.

UNIT – III: Simulation and Optimization Modeling (15 hours)

Monte Carlo simulating deterministic, and probabilistic behavior, Generating random numbers; Linear programming model: Geometric and algebraic solutions, Simplex method and its tableau format, Sensitivity analysis.

Essential Readings

1. Mickens, Ronald E. (2022). Mathematical Modelling with Differential Equations. CRC Press, Taylor & Francis Group.
2. Edwards, C. Henry, Penney, David E., & Calvis, David T. (2023). Differential Equations and Boundary Value Problems: Computing and Modeling (6th ed.). Pearson.
3. Giordano, Frank R., Fox, William P., & Horton, Steven B. (2014). A First Course in Mathematical Modeling (5th ed.). Brooks/Cole, Cengage Learning India Pvt. Ltd.

Suggestive Readings

- Barnes, Belinda & Fulford, Glenn R. (2015). Mathematical Modeling with Case Studies, Using Maple and MATLAB (3rd ed.). CRC Press. Taylor & Francis Group.
- Ross, Shepley L. (2014). Differential Equations (3rd ed.). Wiley India Pvt. Ltd.
- Simmons, George F. (2017). Differential Equations with Applications and Historical Notes (3rd ed.). CRC Press. Taylor & Francis Group.

Practical (30 hours)- Practical work to be performed in Computer Lab: Modeling of the following problems using: R/Python/SageMath/Mathematica/MATLAB/Maxima/Scilab etc.

1. a) Simulation of SIR model and its variants using some initial parameter values, and finding basic reproduction number for analysis.
b) Analysis of the dieting process, which includes both body-mass loss and gain.
2. Nonlinear Systems and Phenomena.
a) Plot phase plane portraits and solutions of first-order equations.
b) Obtain interesting and complicated phase portraits for almost linear systems.

c) Discuss large wildlife conservation preserve model and obtain (i) The period of oscillation of the rabbit and fox populations, (ii) The maximum and minimum numbers of rabbits and foxes.

d) Discuss the Rayleigh and van der Pol models.

3. (i) Random number generation and then use it for the following:

- Simulate area under a given curve.
- Simulate volume under a given surface.

(ii) [2] Chapter 7 (Projects 7.4 and 7.5).

DISCIPLINE SPECIFIC ELECTIVE COURSE – 2(iii): MECHANICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Mechanics	4	3	1	0	Class XII pass with Mathematics	DSC-5: Calculus DSC-6: Ordinary Differential Equations

Learning Objectives: The main objective of this course is to:

- Starting Newtonian laws, learning various technical notions which explains various states of motion under given forces.
- Deals with the kinematics and kinetics of the rectilinear and planar motions of a particle including constrained oscillatory motions of particles, projectiles, and planetary orbits.
- Understand hydrostatic pressure and thrust on plane surfaces.

Learning Outcomes: This course will enable the students to:

- Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces.
- Apply the concepts of center of gravity, laws of static and kinetic friction.
- Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions.
- Evaluate the hydrostatic pressure at any given depth in a heavy homogeneous liquid at rest under gravity.

SYLLABUS OF DSE-2(iii)

UNIT – I: Statics **(15 hours)**

Fundamental laws of Newtonian mechanics, Law of parallelogram of forces, Equilibrium of a particle, Lamy's theorem, Equilibrium of a system of particles, External and internal forces, Couples, Reduction of a plane force system, Work, Principle of virtual work, Potential energy and conservative field, Mass centers, Centers of gravity, Friction.