

**COMMON POOL OF GENERIC ELECTIVES (GE) COURSES
OFFERED BY DEPARTMENT OF MATHEMATICS
CATEGORY-IV**

GE-1(i)

GENERIC ELECTIVES: FUNDAMENTALS OF CALCULUS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Fundamentals of Calculus	4	3	1	0	Class XII pass with Mathematics	NIL

Learning Objectives

The Learning Objectives of this course is as follows:

- Understand the quantitative change in the behaviour of the variables and apply them on the problems related to the environment.

Learning Outcomes

Upon completion of this course, students will be able to:

- Understand continuity and differentiability in terms of limits.
- Describe asymptotic behavior in terms of limits involving infinity.
- Understand the importance of mean value theorems and its applications.
- Learn about Maclaurin's series expansion of elementary functions.
- Use derivatives to explore the behavior of a given function, locating and classifying its extrema, and graphing the polynomial and rational functions.

SYLLABUS OF GE-1(i)

Theory

Unit – 1 **(15 hours)**

Continuity and Differentiability of Functions

Limits and continuity, Types of discontinuities; Differentiability of functions; Successive differentiation: Calculation of the nth derivatives, Leibnitz theorem; Partial differentiation, Euler's theorem on homogeneous functions.

Unit – 2 (15 hours)**Mean Value Theorems and its Applications**

Rolle's theorem, Mean value theorems and applications to monotonic functions and inequalities; Expansion of functions: Taylor's theorem, Taylor's series, Maclaurin's series expansion of $e^x, \sin x, \cos x, \log(1+x)$ and $(1+x)^m$; Indeterminate forms.

Unit – 3 (15 hours)**Tracing of Curves**

Concavity and inflection points, Asymptotes (parallel to axes and oblique), Relative extrema, Tracing graphs of polynomial functions, rational functions, and polar equations.

Practical component (if any) – NIL**Essential Readings**

- Anton, Howard, Bivens, Irl, & Davis, Stephen (2013). Calculus (10th ed.). Wiley India Pvt. Ltd. New Delhi. International Student Version. Indian Reprint 2016.
- Prasad, Gorakh (2016). Differential Calculus (19th ed.). Pothishala Pvt. Ltd. Allahabad.

Suggestive Reading

- Thomas Jr., George B., Weir, Maurice D., & Hass, Joel (2014). Thomas' Calculus (13th ed.). Pearson Education, Delhi. Indian Reprint 2017.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GE-1(ii)**GENERIC ELECTIVES: THEORY OF EQUATIONS AND SYMMETRIES****CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Theory of Equations and Symmetries	4	3	1	0	Class XII pass with Mathematics	NIL

Learning Objectives

The goal of this course is to acquaint students with certain ideas about:

- Integral roots, rational roots, an upper bound on number of positive or negative roots of a polynomial.
- Finding roots of cubic and quartic equations in special cases using elementary symmetric functions.
- Using Cardon's and Descartes' methods, respectively.