

**COMMON POOL OF GENERIC ELECTIVES (GE) Semester-VII COURSES OFFERED
BY DEPARTMENT OF MATHEMATICS**

Category-IV

GENERIC ELECTIVES (GE-7(i)): APPLIED ALGEBRA

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Applied Algebra	4	3	1	0	Class XII pass with Mathematics	Linear Algebra, Abstract Algebra

Learning Objectives: The primary objective of this course is to:

- Introduce the applications of linear algebra in the field of science and arts.
- Develop the analytical and numerical skills to apply the algebraic concepts in real-life situations.
- Understand the identification numbers and different check digit schemes that can be used to reduce the errors during their transmission.

Learning Outcomes: This course will enable the students to:

- Understand the system of linear equations, matrices, and transformations in the fields of economics, science, engineering, and computer science.
- Apply the combinatorics and graph theory in scheduling and reliability theory.
- Learn about identification numbers and using check digits to check for errors after the identification number has been transmitted.

SYLLABUS OF GE-7(i)

UNIT-I: Applications of Linear Algebra (15 hours)

Applications of linear systems: Leontief input-output model in economics, Traffic flow, and diet problem; Applications to computer graphics, difference equations and Markov chains; Applications to linear models: Least-squares problems, and least-squares lines.

UNIT-II: Latin Squares and Graph Models (12 hours)

Latin squares, Table for a finite group as a Latin square, Latin squares as in design of experiments; Mathematical models for matching jobs, Spelling checker, Network reliability, Street surveillance, Scheduling meetings, Interval graph modeling and Influence model, Pitcher pouring puzzle.

UNIT-III: Various Check Digit Schemes**(18 hours)**

Developing identification numbers, Types of identification numbers, Transmission errors, Check digits, Integer division, Modular arithmetic, US postal money orders, Airline ticket identification numbers, The Universal Product Code check digit scheme, ISBN check digit scheme, Creating Identification numbers, IBM scheme, Symmetry, Symmetry and Rigid motions, Verhoeff check digit scheme.

Essential Readings

1. David C. Lay, Steven R. Lay and Judi J. McDonald (2016). Linear Algebra and Its Applications (5th ed.). Pearson.
2. Tucker, Alan (2012). Applied Combinatorics (6th ed.). John Wiley & Sons, Inc.
3. Kirtland, Joseph (2001). Identification Numbers and Check Digit Schemes. Mathematical Association of America.

Suggestive Readings

- Andirilli, Stephen and Hecker, David (2016). Elementary Linear Algebra (5th ed.). Academic Press, Elsevier.
- Lidl, Rudolf and Pilz, Günter (1998). Applied Abstract Algebra (2nd ed.). Springer. Indian Reprint 2014.
- Strang, Gilbert (2016). Introduction to Linear Algebra (5th ed.). Wellesley-Cambridge.

GENERIC ELECTIVES (GE-7(ii)): ELEMENTS OF METRIC SPACES**CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Elements of Metric Spaces	4	3	1	0	Class XII pass with Mathematics	Calculus, Real Analysis

Learning Objectives: The objective of the course is to introduce:

- The usual idea of distance into an abstract form on any set of objects, maintaining its inherent characteristics, and the resulting consequences.
- The two important topological properties, namely connectedness, and compactness of metric spaces with their characterizations.

Learning Outcomes: This course will enable the students to:

- Learn various natural and abstract formulations of distance on the sets of usual or unusual entities.
- Analyse how a theory advances from a particular frame to a general frame.
- Appreciate the mathematical understanding of various geometrical concepts, viz. balls or connected sets etc. in an abstract setting.