

UNIT-III: Various Check Digit Schemes**(18 hours)**

Developing identification numbers, Types of identification numbers, Transmission errors, Check digits, Integer division, Modular arithmetic, US postal money orders, Airline ticket identification numbers, The Universal Product Code check digit scheme, ISBN check digit scheme, Creating Identification numbers, IBM scheme, Symmetry, Symmetry and Rigid motions, Verhoeff check digit scheme.

Essential Readings

1. David C. Lay, Steven R. Lay and Judi J. McDonald (2016). Linear Algebra and Its Applications (5th ed.). Pearson.
2. Tucker, Alan (2012). Applied Combinatorics (6th ed.). John Wiley & Sons, Inc.
3. Kirtland, Joseph (2001). Identification Numbers and Check Digit Schemes. Mathematical Association of America.

Suggestive Readings

- Andirilli, Stephen and Hecker, David (2016). Elementary Linear Algebra (5th ed.). Academic Press, Elsevier.
- Lidl, Rudolf and Pilz, Günter (1998). Applied Abstract Algebra (2nd ed.). Springer. Indian Reprint 2014.
- Strang, Gilbert (2016). Introduction to Linear Algebra (5th ed.). Wellesley-Cambridge.

GENERIC ELECTIVES (GE-7(ii)): ELEMENTS OF METRIC SPACES**CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Elements of Metric Spaces	4	3	1	0	Class XII pass with Mathematics	Calculus, Real Analysis

Learning Objectives: The objective of the course is to introduce:

- The usual idea of distance into an abstract form on any set of objects, maintaining its inherent characteristics, and the resulting consequences.
- The two important topological properties, namely connectedness, and compactness of metric spaces with their characterizations.

Learning Outcomes: This course will enable the students to:

- Learn various natural and abstract formulations of distance on the sets of usual or unusual entities.
- Analyse how a theory advances from a particular frame to a general frame.
- Appreciate the mathematical understanding of various geometrical concepts, viz. balls or connected sets etc. in an abstract setting.

SYLLABUS OF GE-7(ii)**UNIT-I: Topology of Metric Spaces (18 hours)**

Inequalities, Definition and examples, Sequences and Cauchy sequences, Complete metric space; Open and closed balls, Neighborhood, Open set, Interior of a set, Limit point of a set, Closed set, Closure of a set; Subspaces.

UNIT-II: Continuity and Uniform Continuity in Metric Spaces (15 hours)

Continuous mappings, Sequential criterion, and other characterizations of continuity; Uniform continuity; Homeomorphism, isometry, and equivalent metrics.

UNIT-III: Connected and Compact Spaces (12 hours)

Connected subsets of \mathbb{R} , Connectedness and continuous mappings; Compactness and boundedness, Characterizations of compactness, Continuous functions on compact spaces.

Essential Reading

1. Shirali, Satish & Vasudeva, H. L. (2009). Metric Spaces. Springer. Indian Reprint 2019.

Suggestive Reading

- Kumaresan, S. (2014). Topology of Metric Spaces (2nd ed.). Narosa Publishing House.

GENERIC ELECTIVES (GE-7(iii)): INTRODUCTION TO GRAPH THEORY**CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Introduction to Graph Theory	4	3	1	0	Class XII pass with Mathematics	NIL

Learning Objectives: The primary objective of this course is to introduce:

- Problem-solving techniques using various concepts of graph theory.
- Various properties like planarity and chromaticity of graphs.
- Several applications of these concepts in solving practical problems.

Learning Outcomes: This course will enable the students to:

- Good familiarity with all initial notions of graph theory and related results and seeing them used for some real-life problems.
- Learning notion of trees and their enormous usefulness in various problems.
- Learning various algorithms and their applicability.
- Studying planar graphs, Euler theorem associated to such graphs and some useful applications like coloring of graphs.