

SYLLABUS OF GE-7(iii)**UNIT-I: Graphs, Types of Graphs and Basic Properties (12 hours)**

Graphs and their representation, Pseudographs, Subgraphs, Degree sequence, Euler's theorem, Isomorphism of graphs, Paths and circuits, Connected graphs, Euler trails and circuits, Hamiltonian paths and cycles, Adjacency matrix, Weighted graphs, Travelling salesman problem, Dijkstra's algorithm.

UNIT-II: Directed Graphs and Applications, Trees (18 hours)

The Chinese postman problem; Digraphs, Bellman-Ford algorithm, Tournaments, Directed network, Scheduling problem; Trees and their properties, Spanning trees, Kruskal's algorithm, Prim's algorithm, Acyclic digraphs and Bellman's algorithm.

UNIT-III: Planar Graphs, Graph Coloring and Network Flows (15 hours)

Planar graphs, Euler's formula, Kuratowski theorem, Graph coloring, Applications of graph coloring, Circuit testing and facilities design, Flows and cuts, Max flow-min cut theorem, Matchings, Hall's theorem.

Essential Reading

1. Goodaire, Edgar G., & Parmenter, Michael M. (2011). Discrete Mathematics with Graph Theory (3rd ed.). Pearson Education Pvt. Ltd. Indian Reprint.

Suggestive Readings

- Bondy, J. A. & Murty, U.S.R. (2008), Graph Theory with Applications. Springer.
- Chartrand, Gary, & Zhang, P. (2012). A First Course in Graph Theory. Dover Publications.
- Diestel, R. (1997). Graph Theory (Graduate Texts in Mathematics). Springer Verlag.
- West, Douglas B. (2001). Introduction to graph theory (2nd ed.). Pearson India.

GENERIC ELECTIVES (GE-7(iv)): TOPICS IN MULTIVARIATE CALCULUS**CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Topics in Multivariate Calculus	4	3	1	0	Class XII pass with Mathematics	Calculus

Learning Objectives: The primary objective of this course is to introduce the:

- Extension of the studies of single variable differential and integral calculus to functions of two or more independent variables.
- Applications of multivariable calculus tools to physics, economics, and optimization.

- Geometry and visualisation of curves and surfaces in two dimensions (plane) and three dimensions (space).
- Techniques of integration to functions of two and three independent variables.

Learning Outcomes: This course will enable the students to:

- Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion.
- Understand the maximization and minimization of multivariable functions subject to the given constraints on variables.
- Learn about inter-relationship amongst the line integral, double and triple integral formulations.
- Familiarize with Green's, Stokes' and Gauss divergence theorems.

SYLLABUS OF GE-7(iv)

UNIT-I: Calculus of Functions of Several Variables (18 hours)

Basic Concepts, Limits and Continuity, Tangent Planes, Partial Derivatives, Total Differential, Differentiability, Chain Rules, Directional Derivatives and the Gradient, Extrema of Functions of Two Variables, Method of Lagrange multipliers with one constraint.

UNIT-II: Double and Triple Integrals (15 hours)

Double integration over rectangular and nonrectangular regions, Double integrals in polar coordinates, Triple integral over a parallelopiped and solid regions, Volume by triple integrals, Triple integration in cylindrical and spherical coordinates, Change of variables in double and triple integrals.

UNIT-III: Green's, Stokes' and Gauss Divergence Theorem (12 hours)

Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, Gauss divergence theorem.

Essential Reading

1. Strauss, Monty J., Bradley, Gerald L., & Smith, Karl J. (2007). Calculus (3rd ed.). Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Delhi. Indian Reprint 2011.

Suggestive Reading

- Marsden, J. E., Tromba, A., & Weinstein, A. (2004). Basic Multivariable Calculus. Springer (SIE). First Indian Reprint.