

**UNIT-III: Algebraic Extensions****(15 hours)**

Characterization of field extensions, Finite extensions, Properties of algebraic extensions; Classification of Finite Fields, Structure of Finite Fields, Subfields of a Finite Field; Geometric Constructions: Constructible Numbers, Angle-Trisectors and Circle-Squares.

**Essential Readings**

1. Gallian, Joseph. A. (2017). Contemporary Abstract Algebra (9th ed.). Cengage Learning India Private Limited, Delhi. Indian Reprint (2021).
2. Herstein. I. N. (1975). Topics in Algebra (2nd ed.). Wiley India. Reprint 2022.

**Suggestive Readings**

- Dummit, David S., and Foote, Richard M. (2011). Abstract Algebra (3rd ed.), Wiley.
- Garling, D. J. H. (2021). Galois Theory and Its Algebraic Background (2nd ed.). Cambridge University Press.

**GENERIC ELECTIVES (GE-8(ii)): ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS****CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

| Course title & Code                        | Credits | Credit distribution of the course |          |                    | Eligibility criteria            | Pre-requisite of the course (if any) |
|--------------------------------------------|---------|-----------------------------------|----------|--------------------|---------------------------------|--------------------------------------|
|                                            |         | Lecture                           | Tutorial | Practical/Practice |                                 |                                      |
| Elements of Partial Differential Equations | 4       | 3                                 | 1        | 0                  | Class XII pass with Mathematics | Differential Equations               |

**Learning Objectives:** The main objective of this course is to introduce:

- Basic concepts of first and second-order linear/nonlinear partial differential equations.
- Methods to solve first-order nonlinear PDEs and determine integral surfaces.
- Linear PDEs with constant coefficients, and finding their solutions using complimentary functions and particular integral.
- Modeling of wave equation, diffusion equation, traffic flow and their solutions.

**Learning Outcomes:** The course will enable the students to learn:

- Charpit's and Jacobi's methods to solve first-order nonlinear partial differential equations in two and three independent variables, respectively.
- Monge's method for integrating PDE of type  $Rr + Ss + Tt = V$ .
- The Cauchy problem and solutions of one-dimensional wave equations with initial boundary-value problems, and vibration of finite string with fixed ends.
- The macroscopic modeling of the traffic flow, where the focus will be on modeling the density of cars and their flow, rather than modeling individual cars and their velocity.

## SYLLABUS OF GE-8(ii)

### UNIT-I: First-order Partial Differential Equations (18 hours)

Review of basic concepts: Origins of first-order PDEs, Lagrange's method for solving linear equations of first order; Integral surfaces passing through a given curve, and surfaces orthogonal to a given system of surfaces; Nonlinear PDEs of the first order, and compatible systems of first-order PDEs; Charpit's method for solving nonlinear PDEs, special types of first-order PDEs, and solutions satisfying given conditions; Jacobi's method for solving nonlinear PDE with three independent variables.

### UNIT – II: Second-order Partial Differential Equations (15 hours)

Origins of second-order PDEs, and solving linear PDEs with constant coefficients using methods of finding the complementary function and particular integral; Monge's method of integrating nonlinear second-order PDE of type  $Rr + Ss + Tt = V$  with variable coefficients.

### UNIT – III: Applications of Partial Differential Equations (12 hours)

Solution of one-dimensional diffusion equation and wave equation by method of separation of variables, d'Alembert's solution of the Cauchy problem for the one-dimensional wave equation; Solutions of homogeneous one-dimensional wave equations with initial boundary-value problems, and vibration of finite string with fixed ends; Traffic flow model.

#### Essential Readings

- 1 Myint-U, Tyn & Debnath, Lokenath. (2007). Linear Partial Differential Equations for Scientists and Engineers (4th ed.). Birkhäuser. Indian Reprint.
- 2 Piaggio, H.T.H. (2004). Differential Equations. CBS Publishers & Distributors, Delhi.
- 3 Sneddon, Ian N. (2006). Elements of Partial Differential Equations, Dover Publications. Indian Reprint.

#### Suggestive Readings

- Amaranath T. (2023). An Elementary Course in Partial Differential Equations (3rd ed.). Narosa Publishing House.
- Arrigo, Daniel (2023). An Introduction to Partial Differential Equations (2nd ed.). Springer.
- Kapoor, N. M. (2023). A Text Book of Differential Equations. Pitambar Publishing Company.

## GENERIC ELECTIVES (GE-8(iii)): ELEMENTS OF COMPLEX ANALYSIS

### CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

| Course title & Code          | Credits | Credit distribution of the course |          |                    | Eligibility criteria            | Pre-requisite of the course (if any) |
|------------------------------|---------|-----------------------------------|----------|--------------------|---------------------------------|--------------------------------------|
|                              |         | Lecture                           | Tutorial | Practical/Practice |                                 |                                      |
| Elements of Complex Analysis | 4       | 3                                 | 1        | 0                  | Class XII pass with Mathematics | Metric Spaces, Multivariate Calculus |