

GE-3(i)

GENERIC ELECTIVES-GE-3(i): DIFFERENTIAL EQUATIONS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Differential Equations	4	3	1	0	Class XII pass with Mathematics	Nil

Learning Objectives

The primary objective of this course is to introduce:

- Ordinary and partial differential equations.
- Basic theory of higher order linear differential equations, Wronskian and its properties.
- Various techniques to find the solutions of above differential equations which provide a basis to model complex real-world situations.

Learning Outcomes

This course will enable the students to:

- Solve the exact, linear, Bernoulli equations, find orthogonal trajectories and solve rate problems.
- Apply the method of undetermined coefficients and variation of parameters to solve linear differential equations.
- Solve Cauchy-Euler equations and System of linear differential equations.
- Formulate and solve various types of first and second order partial differential equations.

SYLLABUS OF GE-3(i)

Unit – 1 **(15 hours)**

Ordinary Differential Equations

First order ordinary differential equations: Basic concepts and ideas, First order Exact differential equations, Integrating factors and rules to find integrating factors, Linear equations and Bernoulli equations, Initial value problems, Applications of first order differential equations: Orthogonal trajectories and Rate problems; Basic theory of higher order linear differential equations, Wronskian and its properties.

Unit – 2 **(12 hours)**

Explicit Methods of Solving Higher-Order Linear Differential Equations

Linear homogeneous equations with constant coefficients, Linear non-homogeneous equations, Method of undetermined coefficients, Method of variation of parameters, Two-point boundary value problems, Cauchy-Euler equations, System of linear differential equations.

Unit – 3

(18 hours)

First and Second Order Partial Differential Equations

Classification and Construction of first-order partial differential equations, Method of characteristics and general solutions of first-order partial differential equations, Canonical forms and method of separation of variables for first order partial differential equations; Classification and reduction to canonical forms of second-order linear partial differential equations and their general solutions.

Essential Readings

1. Myint-U, Tyn and Debnath, Lokenath (2007). Linear Partial Differential Equations for Scientist and Engineers (4th ed.). Birkhäuser. Indian Reprint.
2. Ross, Shepley L. (1984). Differential Equations (3rd ed.). John Wiley & Sons.

Suggestive Readings

- Edwards, C. Henry, Penney, David E., & Calvis, David T. (2015). Differential Equations and Boundary Value Problems: Computing and Modeling (5th ed.). Pearson Education.
- Kreyszig, Erwin. (2011). Advanced Engineering Mathematics (10th ed.). Wiley India.
- Sneddon I. N. (2006). Elements of Partial Differential Equations. Dover Publications.

GE-3(ii)

GENERIC ELECTIVES-GE-3(ii): LATTICES AND NUMBER THEORY

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Lattices and Number Theory	4	3	1	0	Class XII pass with Mathematics	Nil

Learning Objectives

The primary objective of this course is to introduce:

- The concepts of ordered sets, lattices, sublattices and homomorphisms between lattices.
- Distributive lattices along with Boolean algebra and their applications in the real-world.
- Divisibility theory of congruences along with some applications.
- The number-theoretic functions and quadratic reciprocity law.

Learning Outcomes

This course will enable the students to:

- Understand the notion of ordered sets. Learn about lattices, distributive lattices, sublattices and homomorphisms between lattices.
- Become familiar with Boolean algebra, Boolean polynomials, switching circuits and their applications.
- Learn the concept of Karnaugh diagrams and Quinn–McCluskey method which gives an aid to apply truth tables in real-world problems.