

GE-V(i)

GENERIC ELECTIVES (GE-5(i)): NUMERICAL METHODS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Numerical Methods	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives: The core purpose of the course is to:

- Acquaint students with various topics in numerical solutions of nonlinear equations in one variable, interpolation and approximation, numerical differentiation and integration, direct methods for solving linear systems, numerical solution of ordinary differential equations using Computer Algebra System (CAS).

Learning Outcomes: The course will enable the students to:

- Find the consequences of finite precision and the inherent limits of numerical methods.
- Appropriate numerical methods to solve algebraic and transcendental equations.
- Solve first order initial value problems of ODE's numerically using Euler methods.

SYLLABUS OF GE-5(i)

UNIT-I: Errors and Roots of Transcendental and Polynomial Equations (12 hours)

Errors: Roundoff error, Local truncation error, Global truncation error; Order of a method, Convergence, and terminal conditions; Bisection method, Secant method, Regula–Falsi method, Newton–Raphson method.

UNIT-II: Algebraic Linear Systems and Interpolation (18 hours)

Gaussian elimination method (with row pivoting); Iterative methods: Jacobi method, Gauss–Seidel method; Interpolation: Lagrange form, Newton form, Finite difference operators.

UNIT-III: Numerical Differentiation, Integration and ODE (15 hours)

First and second order numerical derivatives; Trapezoidal rule, Simpson's rule for numerical integration; Ordinary differential equation: Euler's, and Runge–Kutta method.

Essential Readings

1. Chapra, Steven C. (2018). Applied Numerical Methods with MATLAB for Engineers and Scientists (4th ed.). McGraw-Hill Education.
2. Fausett, Laurene V. (2009). Applied Numerical Analysis Using MATLAB. Pearson. India.
3. Jain, M. K., Iyengar, S. R. K., & Jain R. K. (2012). Numerical Methods for Scientific and Engineering Computation (6th ed.). New Age International Publishers. Delhi.

Suggestive Reading

- Bradie, Brian (2006). A Friendly Introduction to Numerical Analysis. Pearson Education India. Dorling Kindersley (India) Pvt. Ltd. Third Impression, 2011.

Note: Non programmable scientific calculator may be allowed in the University examination.

Practical (30 hours): Practical/Lab work to be performed in Computer Lab: Use of computer algebra software (CAS), for example Python/SageMath/Mathematica/MATLAB/Maple/ Maxima/Scilab etc., for developing the following numerical programs:

1. Bisection method
2. Secant method and Regula-Falsi method
3. Newton-Raphson method
4. Gauss-Jacobi method and Gauss-Seidel method
5. Lagrange interpolation and Newton interpolation
6. Trapezoidal rule and Simpson's rule
7. Euler's, and Runge-Kutta methods for solving first order initial-value problems of ordinary differential equations.

GE-5(ii)

GENERIC ELECTIVES (GE-5(ii)): MATHEMATICAL PYTHON

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Mathematical Python	4	3	0	1	Class XII pass with Mathematics	Basic knowledge of python

Learning Objectives: The Learning Objectives of this course are as follows:

- To be able to model and solve mathematical problems using Python Programs.
- To experience utility of open-source resources for numerical and symbolic mathematical software systems.

Learning Outcomes: This course will enable the students to use Python:

- For numerical and symbolic computation in mathematical problems from calculus, algebra, and geometry.
- To tabulate and plot diverse graphs of functions and understand tracing of shapes, geometries, and fractals.
- To prepare smart documents with LaTeX interface.

SYLLABUS OF GE-5(ii)