

BHASKARACHARYA COLLEGE OF APPLIED SCIENCE

Category I

B.Sc. (Honours) Polymer Science

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Chemistry and Engineering of Polymer Reactions (CEPR)	4	3	0	1	12 th with PCM	--

Learning Objectives

- To learn about the different polymerizations
- To study kinetics of chain growth and step growth polymerization
- To understand general concepts, principles, kinetics and methodology of polymerization

Learning outcomes

The Learning Outcomes of this course are as follows:

- Know about overview of aspects of polymer engineering
- Understand essential fundamentals and chemistry of the polymerization processes.
- Learn about various terms such as reaction initiation, propagation and termination

SYLLABUS OF DSC-4

UNIT – I **06 Hours**

INTRODUCTION

Introduction to polymerization process, control of polymer synthesis; thermodynamic and kinetic control, diffusion control, polymer end chain control & control strategies, Introduction to reactor design, Interpretation of batch reactor data; design equations for ideal reactors, namely batch, CSTR, plug flow, design equation for single reaction systems using batch and semi batch, CSTR, PFR, Multiple reactor system; reactor in series and parallel, preference of type of reactor used

UNIT – II **09 Hours**

RADICAL CHAIN POLYMERIZATION

Introduction, thermodynamic and kinetic aspect of radical chain polymerization, rate of polymerization, kinetic chain length, Mayo's equation, cage efficiency, selection criteria of initiators, ceiling temperature, Tromsdorff effect, inhibition and retardation Ziegler-Natta catalyst and stereoregular polymerizations, Radical chain copolymerization (reactivity ratio, copolymer equations)

UNIT – III **06 Hours**

REDOX & OTHER INITIATIONS

Initiation in aqueous media, initiation in non-aqueous media, rate of redox polymerization, photochemical initiation, rate of photo-polymerization, initiation by ionizing radiation, electrolytic polymerization, plasma polymerization.

UNIT – IV **09 Hours**

IONIC CHAIN & CONTROLLED POLYMERIZATIONS

Classification of ionic species, effect of solvents, initiation, propagation and termination in ionic polymerization, cationic polymerization, anionic polymerization, introduction of Atom Transfer Radical Polymerization (ATRP), Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) and Nitroxide mediated polymerization (NMP)

UNIT – V **09 Hours**

STEP GROWTH POLYMERIZATION

Reaction engineering of step growth polymerization: basic properties & examples of commercially important polymers, reactivity of functional groups kinetics of step polymerization, self-catalyzed & external catalysis of polymerization, molecular weight distribution in linear & nonlinear polymerization, effect of non-equivalence of functional groups, equilibrium considerations,

UNIT – VI **06 Hours**

POLYMERIZATION TECHNIQUES

Bulk, solution, precipitation, suspension & emulsion polymerization.

Practical - **30 Hours**

- To prepare polystyrene/poly(methyl methacrylate) by bulk polymerization and determine the rate of polymerization.
- To study the effect of reaction temperature on free radical polymerization of styrene/MMA.
- To study the effect on initiator concentration of free radical polymerization of styrene/MMA.
- Redox initiated polymerization of MMA & investigate the effect of viscosity on polymerization kinetics
- Redox polymerization of acrylamide
- To investigate Trommsdorff effect in bulk polymerization of MMA
- Solution polymerization of methyl methacrylate/styrene.
- Suspension polymerization of styrene/MMA.
- Emulsion polymerization of styrene/ methyl methacrylate.
- Preparation of Poly (vinyl butyral).

Essential/recommended readings

- Odian, G., (2004) Principles of Polymerization, Wiley-interscience.
- Billmeyer F.A., (2011) Textbook of Polymer Science, John-Wiley & Sons.
- Seymour R.B., Carraher C.E., (2003) Polymer Chemistry, Marcel Dekker.
- Flory P.J., (2007) Principles of Polymer Chemistry, Asian Books Private Limited.
- Levenspiel, O. (1998). Chemical reaction engineering. John Wiley & Sons.

Suggestive readings

- Brydson J.A., (2016) Plastics Materials, Butterworth Heinemann, 8th Edition.
- Lenz, R. W. (1967). Organic chemistry of synthetic high polymers.
- Gowarikar V.R., (2019) Polymer Science, New Age International Publishers Ltd, 3rd Edition

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE – 5: POLYMER RHEOLOGY (PR)

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
POLYMER RHEOLOGY (PR)	4	3	0	1	12 th Pass	---

Learning Objectives

- To enhance fundamental knowledge of flow behaviour of polymer melts
- To understand the concept of mixing of polymers

Learning outcomes

The Learning Outcomes of this course are as follows:

- Apply the knowledge of measurement of viscosity in handling of rheological instruments
- Interpret rheology of polymer melts by mechanical models

SYLLABUS OF DSC- 5

UNIT – I **(12 Hours)**

RHEOLOGICAL PRINCIPLES

Viscosity and polymer processing, rheological properties of fluids, shear stress in polymers, Newtonian & non-Newtonian flow, polymer melt viscosities (ideal molten chains, microscopic studies of melts), flow in channels, simple shear flow, melt-flow index, Weissenberg effect, die swell, melt fracture, creep & creep compliance, stress relaxation, isochronous stress-strain curves

UNIT – II **(15 Hours)**

MELT FLOW ANALYSIS

Types of fluid & rheological models, rheological measurements by capillary, parallel plate and cone & plate viscometers, simple elongational flow and its significance, dynamic flow behavior, time dependent fluid behavior

UNIT – III **(09 Hours)**

RHEOLOGICAL MODELS

The elastic and viscoelastic state of polymers – viscoelasticity, viscoelastic models: Maxwell model, Voigt-Kelvin model, Boltzmann superposition principle, dynamic mechanical testing

UNIT – IV **(09 Hours)**

MIXING OF POLYMERS

Types of mixing, concept and importance of master batches, mixing of additives with the polymers, melt compounding

Practical - **30Hours**

- Determination of melt flow index of a polymer such as PP, PS, LDPE etc.
- Determination of intrinsic viscosity by Ubbelohde viscometer.
- Determination of rheological properties of polymer melts by rheometers.
- Measurement of resin/paint viscosity by Ford cup 4.
- Measurement of dynamic viscosity by Brookfield Viscometer.
- Compounding of polymers and investigation of their rheological behavior.
- Industry/R&D organization visit.

Essential/recommended readings

- Gupta B.R., (2004) Applied Rheology in Polymer Processing, Asian Books.
- Rosen S.L., (2012) Fundamental Principles of Polymeric Materials, Wiley-Interscience.
- Ghosh P., (2010) Polymer Science and Technology of Plastic and Rubber, Tata McGraw Hill.
- Aklonis J., Macknight W.J., (2005) Introduction to Polymer Viscoelasticity, John Wiley & Sons
- Middleman, S. (1968). Flow of high polymers; continuum and molecular rheology.

Suggestive readings

- Bird R.B., Armstrong R.C., Hassager O., (1977) Dynamics of Polymeric Liquids (volume 1), John Wiley & Sons, New York.
- Shaw M.T., (2012) Introduction to Polymer Rheology, John Wiley & Sons.
- Dealy, J. M., & Wissbrun, K. F. (2012). Melt rheology and its role in plastics processing: theory and applications. Springer Science & Business Media.
- Hiemenz, P. C., & Lodge, T. P. (2007). Polymer chemistry. CRC press.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE – 6: POLYMER TECHNOLOGY(PT)

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
POLYMER TECHNOLOGY(PT)	4	3	0	1	12 th Pass	-

Learning Objectives

- To learn about the production, properties and applications of thermoset and thermoplastic polymers
- To learn about the chemistry and manufacturing of flexible and rigid polyurethane foams
- To understand the modification of unsaturated polymers

Learning outcomes

The Learning Outcomes of this course are as follows:

- Learn preparation of thermoplastic polymers
- Learn preparation of thermosetting polymers
- Apply the knowledge of polymer synthesis to obtain polymers with desired properties

SYLLABUS OF DSC-6

UNIT – I **(27 Hours)**

THERMOPLASTIC POLYMERS

Manufacturing process, properties and applications of the following polymers:

- Polyethylene (LDPE,LLDPE,VLDPE, HDPE)
- Polypropylene and related copolymers
- Polystyrene ABS, HIPS and related copolymers
- Poly (vinyl chloride) and related copolymers
- Poly (vinyl acetate) and related polymers
- Acrylic polymers (PMMA,PEA, PAA, PAN, Polyacrylamide)
- Aliphatic polyamides (Nylon 6, Nylon 66, Nylon 6,10)
- Polyester (PET, PBT)

UNIT – II **(18 Hours)**

Manufacturing process, curing, properties, and applications of the following polymers:

- Unsaturated polyester resins

- Phenol formaldehyde resins (resols and novolacs)
- Urea and melamine formaldehyde resins
- Epoxides
- Polyurethanes (Flexible & Rigid foams)

Practical -

30 Hours

- Preparation of PMMA bone cement.
- Preparation and testing of epoxy resins
- Preparation of Nylon 6,10 by interfacial polymerization
- Preparation of phenolic resin for adhesive applications.
- Preparation of unsaturated polyester resin and determination of molecular weight by acid value/hydroxyl value.
- Synthesis of copolymer of styrene & maleic anhydride, and styrene & MMA and determination of reactivity ratios.
- To prepare melamine formaldehyde product viz. crockery etc.
- Synthesis of Polyurethane Foams
- Preparation of sodium polyacrylate salt and poly(acrylic acid) from polyacrylamide.

Essential/recommended readings

- Brydson J.A., (2016) Plastics Materials, Butterworth Heinemann, 8th Edition.
- Mittal Vikas, (2011) High Performance Polymers and Engineering Plastics, Wiley.
- Seymour R.B., Carraher C.E., (2003) Polymer Chemistry, Marcel Dekker.
- Billmeyer F.A., (2011) Textbook of Polymer Science, John-Wiley & Sons.
- Gowarikar V.R., (2019) Polymer Science, New Age International Publishers Ltd, 3rd Edition

Suggestive readings

- Flory P.J., (2007) Principles of Polymer Chemistry, Asian Books Private Limited.
- Mark J.E. Erman B., Eirich F.R., (2005) The Science and Technology of Rubber, Elsevier Academic Press.
- Sperling, L. H. (2005). Introduction to physical polymer science. John Wiley & Sons.
- Crompton R.T., (1989) Molecular Motions in High Polymers, Pergamon Press N.Y.
- Crompton T.R., (1989) Analysis of Polymers, Pergamon Press N.Y.
- Treloar, L. R. G. (1983). Mechanical Properties of Solid Polymers, I.M. Ward, John Wiley & Sons Ltd, Chichester.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.