

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENTS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
BASICS OF POLYMER SCIENCE	4	2	0	2	Class 12th with Physics, Chemistry	---

Learning objectives

The Learning Objectives of this course are as follows:

- To familiarize with the structure of polymers will be introduced to students.
- To acquaint students with knowledge of molecular weight determination and polymer solubility

Learning outcomes

After studying this paper, students will be able to

- Distinguish crystalline and amorphous states of polymers
- Correlate polymer flexibility with the glass transition temperature
- Illustrate structure-property relationship of polymers
- Apply mathematical formulae to depict polymer solution properties

SYLLABUS OF GE-1

THEORY COMPONENT-

UNIT – I **(10 Hours)**

Introduction and classification of polymers, configuration and conformation of polymers, nature of molecular interaction in polymers, entanglement, various structures of copolymers such as linear branched and cross-linked copolymers, Polymer solutions, solubility parameter, solution viscosity, polymer solubility, thermodynamics of polymer solutions

UNIT – 2**(10 Hours)**

Physical properties, stress-strain behaviour, mechanical properties (tensile, flexural, impact, fatigue, hardness, creep, abrasion), introduction to flow & glass transition temperature (T_g) and its measurement of T_g , factors affecting the glass transition temperature

UNIT – 3**(10 Hours)**

Nature and structure of polymers – structure-property relationships, Molecular weight of polymers (M_n , M_w etc.), polydispersity, molecular weight distribution and determination of molecular weight by viscosity, end group analysis, cryoscopy, ebulliometry, light scattering & ultracentrifugation methods

PRACTICAL COMPONENT**(60 Hours)**

- Chemical identification of polymers: Functional groups (associated with polymers).
- Determination of molecular weight by solution viscosity/end group analysis.
- To check the solubility of the given polymeric sample in different solvents.
- To determine the melting point of crystalline polymers.
- Determination of heat deflection temperature & vicat softening point of polymers.
- Determination of Acid value of acrylic acid
- Estimation of hydroxyl value by PVA and Cyclohexanol
- Determination of epoxy equivalent weight of the epoxy resin.
- Determination of saponification value of oil.
- Study of three component systems.

ESSENTIAL/RECOMMENDED READINGS

- Brydson J.A., (2016) Plastics Materials, Butterworth Heinemann, 8th Edition.
- Ghosh P., (2010) Polymer Science and Technology: Plastics, Rubbers, Blends and Composites Tata McGraw-Hill.
- Gowarikar V.R., (2019) Polymer Science, New Age International Publishers Ltd, 3rd Edition
- Billmeyer F.W., (2007) Textbook of Polymer Science, Wiley, India.
- Shah V., (1998) Handbook of Plastics Testing Technology, Wiley interscience publications.

SUGGESTIVE READINGS

- Schultz J.M., (2001) Polymer Crystallization, American Chemical Society.
- Seymour R.B., Carraher C.E., (2000) Polymer Chemistry, Marcel Dekker.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES (GE-2)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
ADVANCED ANALYTICAL TECHNIQUES	4	2	0	2	Class 12 th with Physics, Chemistry	---

Learning objectives

The Learning Objectives of this course are as follows:

- To acquaint the students with the advanced instrumental techniques and their applications in characterization of polymeric materials.

Learning outcomes

After studying this paper, students will be able to

- Elucidate surface morphology of polymeric materials
- Determine crystallinity of various polymers and their characterization on the basis of their thermal stability and glass transition temperature

SYLLABUS OF GE-2

THEORY COMPONENT-

UNIT – I

(8 Hours)