

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical / Practice		
In-silico Tools in Proteomics and Genomics (BCH-DSE -6)	04	02	0	02	Class XII with Science and Biology	Basic courses allied to Biological sciences

Learning Objectives

The objective of this course is to impart basic understanding of computational biology with a broader knowledge of genomics and proteomics. In silico tools used in the study of genomes and proteins will be emphasized. The course presents an overview of theoretical knowledge, and practical methods for characterization of functional elements in DNA and Protein data. Students will be trained in the basic theory and application of programs used for database searching, protein and DNA sequence analysis, genome analysis, prediction of protein structures and protein-protein interactions.

Learning outcomes

On successful completion of the course students will be able to:

1. Discuss the basics of bioinformatics and computational biology
2. Describe the use of several softwares/tools in omics biology.
3. Discuss, access and use biological databases in the public domain.
4. Explain protein structure using visualization softwares.
5. Perform sequence alignments
6. Discuss the fundamental aspects of *in-silico* protein structure prediction.
7. Explain the applications of bioinformatics from genomes to personalized medicine.
8. Describe the concept of drug designing using a bioinformatic approach.

SYLLABUS OF DSE-6

BCH-DSE-6 : In-silico Tools in Proteomics and Genomics Semester – V

2.2 Course

Contents

Theory

Credits: 2 (30 Hours)

Unit I: Introduction to omics biology **No. of hours:**
4

History of omics biology, introduction to central dogma, Scope of bioinformatics, Tools and databases (sequence alignment, BLAST, NCBI and PDB databases)

Unit II: Genomics **No. of hours:**
9

Introduction to Genomics, Structure and Organization of Prokaryotic and Eukaryotic Gene. Genome Sequencing, Human Genome Project, Genome Browsers, Gene annotation, Gene Identification and Sequence analysis

Unit III: Protein structure prediction and proteomics **No. of hours:**
9

Introduction to proteomics, 2D gel Electrophoresis, Mass spectroscopy, computational prediction of protein 2D and 3D structure - Homology Modeling, Fold Recognition and *ab-intio* methods, protein - protein interactions (yeast two hybrid system, pull down assay), Protein Disordered Regions

Unit IV: Applications of genomics and proteomics	No. of hours:
8	

Functional Genomics, Comparative genomics, Proteomics in Drug discovery, Protein-Drug interaction studies, Computer Aided Drug Discovery (CADD). Role of genomics and proteomics in Diagnostics and Therapeutics. Role of AI in genomics and proteomics.

2.3 Practical:

Credits: 2 (60 Hours)

1. Sequence retrieval (protein and gene) from NCBI.
2. Sequence Analysis - BLAST suite of tools for pairwise alignment.
3. Gene Prediction Tools (Genscan/Glimmer)
4. Structure download (protein and DNA) from PDB & Molecular view by visualization Software (Pymol/Rasmol)
5. Protein Secondary Structure Prediction Tools (GORR)
6. Protein Tertiary Structure Prediction (Homology Modelling/SWISS Model)
7. Protein -Protein Interaction Databases (STRING)
8. Protein-Ligand Docking and Interaction studies (CADD)

2.4 Essential readings:

1. David M. (2004). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press; ISBN 978-087969712-9.
2. Pevsner, J. (2003). Bioinformatics and Functional Genomics (1st ed.), John Wiley & Sons, Inc. (New Jersey); ISBN: 0-47121004-8.
3. Baxevanis A.D. and Ouellette Francis B.F. (2005), Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (3rd ed.), John Wiley & Sons, Inc. (New Jersey), ISBN: 0-47147878-4.
4. Ghosh, Z. and Mallick, B., (2008) Bioinformatics – Principles and Applications, (1st ed.) Oxford University Press (India), ISBN: 9780195692303.

5. Introduction to Proteomics – Tools for the new biology (1st Ed.) by Liebler, D.C., Humana Press Inc., New Jersey, USA. 2002.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.