

DISCIPLINE SPECIFIC ELECTIVE COURSE – (BIOMED-DSE-)
FUNDAMENTALS OF NEUROSCIENCE

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the Course	Department offering the course
		Lecture	Tutorial	Practical/ Practice			
Fundamentals of Neuroscience	4	3	-	1	XII Pass with Physics, Chemistry & biology	Basic knowledge of Physiology, biochemistry and Cell biology	Biomedical Science

Learning Objectives

The Learning Objectives of this course are as follows:

- To provide a comprehensive overview of the basic principles and concepts in neuroscience, including the structure and function of the nervous system, neural communication, and basic neuroanatomy.
- The paper aims to investigate the neural mechanisms underlying a particular phenomenon, such as perception, memory, learning, decision-making, or emotion.
- To prepare students to undertake further research in the area of neuroscience.

Learning outcomes

Having successfully completed this course, students shall be able:

- To understand the fundamental organization, function and development of the nervous system.
- To conceptualize and compare the role of different neurotransmitters.
- To understand the mechanisms of different disorders associated with the nervous system.
- To appreciate the principles and applications of different tools and techniques used in neuroscience.
- To proficiently explore relevant websites and databases related to latest initiatives in the field of neuroscience.

SYLLABUS

Unit I: Introduction to Neuroscience (10hrs)

Brief overview of Neuroanatomy: Timeline of the nervous system development, Organization of Central Nervous System (CNS), Peripheral Nervous System (PNS), Autonomic Nervous System (ANS). Meninges and Cerebrospinal Fluid (CSF), Vascular Supply of the Brain: blood brain barrier and blood CSF barrier.

Unit II: Neurochemistry and Neurophysiology (10hrs)

Introduction to Neurochemistry, overview of synaptic transmission and cellular signaling. Neurotransmitters and their receptors: Acetylcholine, Glutamate, GABA, Dopamine, Serotonin and Epinephrine. Neuropeptides, Gut-Brain axis. Membrane potentials, Post synaptic potential and synaptic integration, Neuromuscular junctions.

Unit III: Brain and Behavior (06 hrs)

Neuroplasticity, learning and memory, cognition, sleep, circadian rhythm, Affective immunology: emotions and Immunity

Unit IV: Diseases of the nervous system (10hrs)

Overview of neuroinflammation, Neurochemical and molecular mechanisms of different neurological conditions: Autism, Attention Deficit Hyperactivity Disorder (ADHD), Epilepsy, Anxiety and depression, Alzheimer Disease, Parkinson Disease/ Schizophrenia, and Amyotrophic Lateral Sclerosis (ALS)

Unit V: Tools and Techniques in Neuroscience / Kaleidoscopic Dimensions of Neuroscience(09hrs)

Methods and tools to study brain and behavior: neuroimaging techniques (MRI, PET), electrophysiological studies (EEG). *In vitro* models of neurosciences including cell culture, tissue culture and animal models. Introduction to Neuroinformatics.

Practical (30 hrs)

(Wherever wet lab experiments are not possible the principles and concepts can be demonstrated through any other material or medium including videos/virtual labs etc.)

1. Gross examination of the brain and its different parts (human and animal) through videos.
2. Histology of different brain sections through permanent slides.
3. Microanatomy of neurons using virtual labs.
4. Electrophysiological studies using physiological data acquisition systems (teaching modules)

5. Exploration and extraction of information about the brain from NCBI, NIF, Allen Brain Atlas, the virtual brain, Human Connectome Project, etc.
6. Behavioral studies using virtual lab- Motor functions tests (Rotarod Test, Grip Strength Test), Cognitive Functions tests – Learning and memory related test (Water Maze, open field test, etc.)

Essential readings:

- Kandel, E. R., Koester, J. D., Mack, S.H., et al. (2021). 6th Edition. Principles of Neural Science. McGraw Hill, ISBN: 978-1259642234
- Sontheimer, H. (2021). 2nd Edition. Diseases of the Nervous System. Elsevier, ISBN: 978-0128212288
- Squire, L., Spitzer, N. C., Berg, D., et al. (2012). 4th Edition. Fundamental Neuroscience, Academic Press, ISBN: 978-0123858702
- Brady, S. T., Siegel, G. J., Albers, R. W., et al. (2011). 8th Edition. Basic Neurochemistry. Academic Press, ISBN: 0125468075
- Zigmond, M. J., Bloom, F. E., Roberts, J. L., et al. (2008). 3rd Edition. Fundamental Neuroscience. Academic Press, ISBN: 978-0123740199

Suggested readings:

- Sanes, D. H., Reh, T. A., Harris, W. A., et al. (2019). 4th Edition. Development of the Nervous system. Academic Press, ISBN: 978-0128039960
- Gilbert, S. F., & Barresi, M. J. F. (2016). 11th Edition. Developmental Biology. Sinauer Associates Inc, ISBN: 978-1605354705
- Hall, J.E. (2015). 13th Edition. Guyton and Hall textbook of Medical Physiology. Philadelphia, USA: W B Saunders and Company. ISBN-13: 978-1455770052
- Aminoff, M., Greenberg, D., Simon, R. P. (2015). 9th Edition. Clinical Neurology. McGraw Hill Education, ISBN: 978-0071841429