

DISCIPLINE SPECIFIC ELECTIVE COURSE (BIOMED-DSE) INDUSTRIAL MICROBIOLOGY

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Industrial Microbiology	4	3	-	1	XII Pass with Physics, Chemistry & biology	Basic knowledge of biology

Learning objectives

- The Industrial Microbiology course has been formulated to train students on how microbiological techniques are carried out in industrial practices.
- Students will be able to learn usage of microorganism for industrial applications.
- This course will concentrate on experimental practice and their theoretical aspects. Study of this course will develop trained manpower ready for industry and bridge the huge gap that exists between knowledge based conventional education and market demands.
- This would further help inculcate sense of job responsibilities, while maintaining social and environment awareness.

- Students would eventually build-up a progressive and successful career in industries with a biotechnological perspective.

Learning outcomes

- The course on Industrial Microbiology starts with the fundamental basics and scope of industrial microbiology. Students would learn the requirements for setting up an Industrial Microbiological unit along with the kind of microbial products that can be made available.
- The course would help the students to explore the benefits of microbial kingdom.
- Students would also understand the process of selection of potent strains suitable for industrial application and use of mutants/genetically modified organism for this purpose. Methods associated with usage and selection of appropriate fermentation process will enhance the learning of students enable them to think in new horizons.
- Selection of appropriate nutrient for the multiplication of microorganism plays a significant role at industrial level. Through understanding of the current scenario might help them setting their own ventures.
- Students would be given a glimpse of extraction of fermentation products and maintenance of sterility in fermenters. Different types of nutritive products/beverages such as beers, wines, spirits, bread, single cell proteins can be obtained using fermenters.
- At the end of syllabus students would learn the process of waste water treatment by municipal corporations.

SYLLABUS

Unit I: Scope of Industrial Microbiology (6 hrs)

Scope of Industrial Microbiology; Industrial microbiology in comparison to Chemical/any other industry; emphasis on functioning of fermentation industry; examples of products and microbes; Industrial Microbiology and Biotechnology; History (An Art from the Past, a Skill for the Future); Obsolescence in Industrial Microbiology.

Organizational set-up in an industrial microbiology establishment: Upstream processing (USP) and downstream processing (DSP); unit downstream processing. Bioprocess: introduction, advantages and limitations. Industrial fermentation products and their producer microorganisms.

Unit II: Industrial Microorganisms (8 hrs)

Taxonomic diversity of industrially useful bacteria and Fungi: Brief Discussion, general feature and taxonomic position; Bacterial genomes and genomics of bacterial plasmids; Useful Characteristics in microbes used in Industrial Microbiology and Biotechnology; Isolation of suitable producer microorganisms from environment.

Concept of Microorganisms classified as Generally Regarded As Safe (GRAS); Culture Collections of industrial microorganisms; Industrial producer strains and strain improvement: Outline and importance of the process; Use of mutants / Genetically Modified Microorganisms (GMM) as against Wild type isolates for production; ethical issues related to release of GMM in the environment. Aseptic and non-aseptic fermentations; Fermentation types according to organization of biological system: Suspended and support culture; Screening for productive strains. Good manufacturing processes.

Unit III: Industrial Media and the Nutrition of Industrial Organisms (6 hrs)

Basic Nutrient Requirements of Industrial Media; Criteria for the Choice of Raw Materials Used in Industrial Media; Raw Materials Used in Compounding Industrial Media; Potential Sources of Components of Industrial Media; Use of Plant Waste Materials in Industrial Microbiology: Saccharification of Polysaccharides, Standard microbes used in Industry, like useful *E.coli* and *Pichia*.

Unit IV: Fermenters and its Operation (7 hrs)

Definition of a Fermenter; Aerated Stirred Tank Batch Fermenter; Temperature control in a fermenter; Foam production and control; Process control in a fermenter; Anaerobic Batch Fermenters; *Continuous fermentations*; Design of New Fermenters on the Basis of Physiology of the Organisms; Place of the Pilot Plant; Inoculum Preparation; Surface or Solid State Fermenters; Extraction of Fermentation Products; Maintenance of sterility in Fermenters

Unit V: Production of fermented foods and Metabolites (13 hrs)

Single Cell Proteins and its nutrition value; Yeast Production; Other fermented foods – from bread, corn etc; Production of Beers: Barley and Sorghum Beers; Production of wines and spirits: Grape wines; Palm wines and Distilled Alcoholic (or Spirit) Beverages; Production and processing of vinegar. Production of

Organic Acids and Industrial Alcohols; Amino Acids; Biocatalysts; Microbial Fertilizers; Microbial Insecticides; Antibiotics and Anti-Tumor Agents; Ergot Alkaloids; Microbial Transformation and Steroids and Sterols; Vaccines; Microbial Products with Bioactive properties.

Unit VI: Treatment of wastes in industries **(5 hrs)**

Methods for determination of organic matter content in Waste Waters – Dissolved oxygen, Biological oxygen demand, Permanganate value (PV) test, Chemical oxygen demand, Total organic carbon, Total suspended solids, Volatile suspended solids; Wastes from Major Industries; Systems for the Treatment of Wastes; Treatment of the Sludge; Waste Water Disposal in the Pharmaceutical Industry. Municipal waste water treatment plant, Microbial degradation of pollutants (Bioremediation), Recovery of resources from waste using microbes (biomining/metal recovery).

Practical **(30 hrs)**

(Wherever wet lab experiments are not possible the principles and concepts can be demonstrated through any other material or medium including videos/virtual labs etc.)

1. Field trip to any industrial setup / research organization for demonstration of fermenters.
2. Antibiotic/anticancer drugs production using *Streptomyces* species.
3. Replicate the classic experiment of Sir Alexander Fleming experiment for the production of penicillin.
4. Fermentation of sugarcane syrup using yeast and detection of alcohol percentage.
5. Microbial biomass production: manufacturing of baker's yeast.
6. Mushroom cultivation strategies.
7. Maintenance of starter culture for probiotics.
8. Demonstration of production/extraction of microbial production.
9. Commercial microbial production.

Essential Readings

- Willey, J., Sherwood, L., and Woolverton, C.J. (2019). 11th Edition. *Prescott's microbiology*. New York, USA: McGraw-Hill Education. ISBN-13: 1260211887-978 .
- Tortora, G.J., Funke, B.R., Case C.L. Weber, D. and Bair, W. (2018). 13th Edition. *Microbiology: An introduction*. Addison-Wesley, ISBN-13 : 978-0134605180.

- Cappuccino, J.G. and Welsh, C. T. (2017). 11th Edition. Microbiology: A laboratory manual. Pearson Publishers. ISBN-13: 1292175782-978.

Suggestive Readings

- Tille, P. (2013). 13th Edition. Bailey & Scott's diagnostic microbiology. Elsevier's Publishers. ISBN-13 : 978-0323681056
- Pelczar, M.J (2001). 5th Edition. Microbiology. New York, USA: McGraw Hill International. ISBN-13: 9780074623206.