

POOL OF DSE FOR III/IV/V/VI SEMESTER

DISCIPLINE SPECIFIC ELECTIVE COURSE - 1 (DSE-1): Inorganic Materials of Industrial Importance

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Inorganic Materials of Industrial Importance (DSE-1)	04	03	--	01	Class 12 th with Physics, Chemistry	--

Learning Objectives

The objectives of this course are as follows:

- To make students understand the diverse roles of inorganic materials in the industry and to give an insight into how these raw materials are converted into products used in day-to-day life.
- To make students learn about silicates, fertilizers, surface coatings, batteries, engineering materials for mechanical construction.
- To develop the interest of students in the frontier areas of inorganic and material chemistry.

Learning outcomes

By studying this course, the students will be able to:

- State the composition and applications of the different kinds of glass.
- State the composition of cement and discuss the mechanism of setting of cement.
- Defend the suitability of fertilizers for different kinds of crops and soil.
- Explain the process of formulation of paints and the basic principle behind the protection offered by the surface coatings.
- Describe the principle, working and applications of different batteries.
- Evaluate the synthesis and properties of nano-dimensional materials, various semiconductor and superconductor oxides.

SYLLABUS OF DSE-1

Unit 1: Silicate Industries

(6 Hours

Glass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, different types of safety glass, borosilicate glass, fluorosilicate glass, coloured glass, photosensitive glass, photochromic glass, glass wool and optical fibre.

Cement: Manufacture of Portland cement and the setting process, Different types of cements: quick setting cements, eco-friendly cement (slag cement), pozzolana cement.

Unit 2: Fertilizers (6 Hours)

Different types of fertilizers (N, P and K). Importance of fertilizers, chemistry involved in the manufacture of the following fertilizers: urea, calcium ammonium nitrate, ammonium phosphates, superphosphate of lime and potassium nitrate.

Unit 3: Surface Coatings (18 Hours)

Brief introduction to and classification of surface coatings, paints and pigments: formulation, composition and related properties, pigment volume concentration (PVC) and critical pigment volume concentration (CPVC), fillers, thinners, enamels and emulsifying agents. Special paints: heat retardant, fire retardant, eco-friendly paints, plastic paints, water and oil paints. Preliminary methods for surface preparation, metallic coatings (electrolytic and electroless with reference to chrome plating and nickel plating), metal spraying and anodizing.

Contemporary surface coating methods like physical vapor deposition, chemical vapor deposition, galvanising, carburizing, sherardising, boriding, nitriding and cementation.

Unit 4: Batteries (9 Hours)

Primary and secondary batteries, characteristics of an Ideal Battery, principle, working, applications and comparison of the following batteries: Pb- acid battery, Li-metal batteries, Li-ion batteries, Li-polymer batteries, solid state electrolyte batteries, fuel cells, solar cells and polymer cells.

Unit 5: Nano dimensional materials (6 Hours)

Introduction to zero, one and two-dimensional nanomaterial: Synthesis, properties and applications of fullerenes, carbon nanotubes, carbon fibres, semiconducting and superconducting oxides.

Practical component

Practicals: Credits:

01 (Laboratory periods:15 classes of 2 hours each)

(At least four experiments to be performed)

1. Detection of constituents of Ammonium Sulphate fertilizer (Ammonium and Sulphate ions) by qualitative analysis and determine its free acidity.

2. Detection of constituents of CAN fertilizer (Calcium, Ammonium and Nitrate ions) fertilizer and estimation of Calcium content.
3. Detection of constituents of Superphosphate fertilizer (Calcium and Phosphate ions) and estimation of phosphoric acid content.
4. Analysis of (Cu, Ni) in alloy or synthetic samples (methods involving Gravimetry and Spectrophotometry).
5. Analysis of (Cu, Zn) in alloy or synthetic samples (Multiple methods involving Iodometry, and Potentiometry).
6. Synthesis of pure ZnO and Cu doped ZnO nanoparticles.
7. Synthesis of silver nanoparticles by green and chemical approach methods and its characterization using UV-visible spectrophotometer

Essential/recommended readings

Theory:

1. West, A. R. (2014), **Solid State Chemistry and Its Application**, Wiley
2. Smart, L. E.; Moore, E. A. (2012), **Solid State Chemistry An Introduction**, CRC Press Taylor & Francis.
3. Atkins, P.W.; Overton, T.L.; Rourke, J.P.; Weller, M.T.; Armstrong, F.A.(2010), **Shriver and Atkins Inorganic Chemistry**, W. H. Freeman and Company.
4. Kent, J. A. (ed) (1997), **Riegel's Handbook of Industrial Chemistry**, CBS Publishers, New Delhi.
5. Poole Jr.; Charles P; Owens, Frank J.(2003), **Introduction to Nanotechnology**, John Wiley and Sons.

Practical:

1. Svehla, G.(1996), **Vogel's Qualitative Inorganic Analysis**, Prentice Hall.
2. Banewicz, J. J.; Kenner, C.T. **Determination of Calcium and Magnesium in Limestones and Dolomites**, Anal. Chem., 1952, 24 (7), 1186–1187.
3. Ghorbani, H. R.; Mehr, F.P.; Pazoki, H.; Rahmani B. M. **Synthesis of ZnO Nanoparticles by Precipitation Method**. Orient J Chem 2015;31(2).
4. Orbaek, W.; McHale, M.M.; Barron, A.R. **Synthesis and characterization of silver nanoparticles for an undergraduate laboratory**, J. Chem. Educ. 2015, 92, 339–344.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.