

**COMMON POOL OF GENERIC ELECTIVES
OFFERED BY DEPARTMENT OF CHEMISTRY**

GENERIC ELECTIVES -12: Coordination and Organometallic Compounds

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Coordination and Organometallic Compounds (GE-2)	4	2	0	2	Class XII Pass	---

Learning Objectives

The Learning Objectives of this course are as follows:

- To introduce students to some important d-block metals and their compounds which they are likely to come across.
- To make students learn about organometallic compounds, a frontier area of chemistry providing an interface between organic and inorganic chemistry.
- To familiarize students with coordination compounds which find manifold applications in diverse fields.

Learning outcomes

By the end of the course, the students will be able to:

- Familiarize with different types of organometallic compounds, their structures and bonding involved.
- Understand the nature of Zeise's salt and compare its synergic effect with that of carbonyls.
- Identify important structural features of tetrameric methyl lithium and understand the concept of multicenter bonding in these compounds
- Apply 18-electron rule to rationalize the stability of metal carbonyls and related species
- Use IR data to explain the extent of back bonding in carbonyl complexes
- Understand the terms, ligand, denticity of ligands, chelate, coordination number and use standard rules to name coordination compounds
- Use Valence Bond Theory to predict the structure and magnetic behaviour of metal complexes and understand the terms inner and outer orbital complexes
- Understand the properties of coordination compounds and VBT and CFT for bonding in coordination compounds

- Explain the meaning of the terms Δ_o , Δ_t , pairing energy, CFSE, high spin and low spin and how
- CFSE affects thermodynamic properties like lattice enthalpy and hydration enthalpy

Theory:

Unit 1: Coordination Chemistry **4 Hours**

Brief discussion with examples of types of ligands, denticity and concept of chelate. IUPAC system of nomenclature of coordination compounds (mononuclear and binuclear) involving simple monodentate and bidentate ligands.

Unit 2: Bonding in coordination compounds **14 Hours**

Valence Bond Theory (VBT): Salient features of theory, concept of inner and outer orbital complexes of Cr, Fe, Co and Ni. Drawbacks of VBT.

Crystal Field Theory: Splitting of d orbitals in octahedral symmetry. Crystal field effects for weak and strong fields. Crystal field stabilization energy (CFSE), concept of pairing energy. Factors affecting the magnitude of Δ_o .

Spectrochemical series. Splitting of d orbitals in tetrahedral symmetry. Comparison of CFSE for octahedral and tetrahedral fields, tetragonal distortion of octahedral geometry. Jahn-Teller distortion, square planar coordination.

Unit 3: Organometallic Compounds **12 Hours**

Definition and classification with appropriate examples based on nature of metal-carbon bond (ionic, s, p and multicentre bonds). Structure and bonding of methyl lithium and Zeise's salt. Structure and physical properties of ferrocene. 18-electron rule as applied to carbonyls. Preparation, structure, bonding and properties of mononuclear and polynuclear carbonyls of 3d metals. π -acceptor behaviour of carbon monoxide (MO diagram of CO to be discussed), synergic effect and use of IR data to explain extent of back bonding.

Practicals: **60 Hours**

1. Gravimetry

Discuss basic principles of gravimetry (precipitation, co-precipitation and post precipitation, digestion, washing etc)

- Estimation of Ni(II) using dimethylglyoxime (DMG).
- Estimation of copper as CuSCN.
- Estimation of Al(III) by precipitating with oxine and weighing as Al(oxine)3 (aluminium oxinate).

2. Inorganic Preparations

- (i) Schiff's base involving ethylenediamine and salicylaldehyde (or any other amine and aldehyde/ketone) and to check its purity using TLC.
- (ii) Nickel/ Copper complex of the above prepared Schiff's base and its characterisation using UV/Vis spectrophotometer. The IR spectra also to be interpreted
- (iii) tetraamminecopper (II) sulphate
- (iv) potassium trioxalatoferrate (III) trihydrate.
- (v) tetraamminecarbonatocobalt(III) nitrate

References:

Theory:

1. Atkins, P.W.; Overton, T.L.; Rourke, J.P.; Weller, M.T.; Armstrong, F.A. (2010), **Shriver and Atkins Inorganic Chemistry**, W. H. Freeman and Company.
2. Miessler, G. L.; Fischer P.J.; Tarr, D.A. (2014), **Inorganic Chemistry**, Pearson.
3. Huheey, J.E.; Keiter, E.A., Keiter; R.L., Medhi, O.K. (2009), **Inorganic Chemistry- Principles of Structure and Reactivity**, Pearson Education.
4. Pfennig, B. W. (2015), **Principles of Inorganic Chemistry**. John Wiley & Sons.
5. Cotton, F.A.; Wilkinson, G. (1999), **Advanced Inorganic Chemistry** Wiley-VCH.

Practicals:

1. Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. (1989), **Vogel's Textbook of Quantitative Chemical Analysis**, John Wiley and Sons.
2. Schiff Base Complex of Cu (II) with Antibacterial and Electrochemical Study, Arjun C. Bhowmick, Majharul I. Moim, Miththira Balasingam , **American Journal of Chemistry** 2020, 10(2): 33-37, DOI: 10.5923/j.chemistry.20201002.03

Keywords: Organometallic compounds, metal carbonyls, synergistic effect, Coordination compounds, VBT, Crystal field theory, Splitting of d levels, Dq

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.