

GENERIC ELECTIVES -15 : CHEMICAL KINETICS AND PHOTOCHEMISTRY

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Chemical Kinetics and Photochemistry (GE-8)	4	2	0	2	Class XII Pass	-----

Learning Objectives

- To make students learn about the fundamentals of chemical kinetics, rates of chemical reactions, complex reactions, theories of reaction rate and the laws of photochemistry aimed at understanding electronic transitions upon irradiation of electromagnetic radiation in UV-Vis region.

Learning outcomes

By the end of the course, the students will be able to:

- Understand the concept of rate of a reaction, order and molecularity of a reaction, various factors affecting the rate and theories of reaction rates.
- Students will be able to apply the learnt concepts in studying the reaction kinetics of various reactions.
- Understand the basic concepts of photochemistry, photochemical and photosensitized reactions and their role in biochemical systems.

Syllabus - Theory:

Unit 1: Chemical Kinetics

20 Hours

The concept of reaction rates, effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction, derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants), half-life of a reaction, general methods for determination of order of a reaction. kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and their differential rate

equations (steady-state approximation in reaction mechanisms). Concept of activation energy and its calculation from Arrhenius equation. Theories of reaction rates: Collision theory and activated complex theory of bi-molecular reactions. Comparison of the two theories (qualitative treatment only)

Unit 2: Photochemistry

10 Hours

Characteristics of electromagnetic radiation, Jablonski Diagram. Lambert-Beer's law and its limitations, physical significance of absorption coefficients. Laws of photochemistry, quantum yield, actinometry, examples of low and high quantum yields, photochemical equilibrium and the differential rate of photochemical reactions, photosensitized reactions, quenching. Role of photochemical reactions in biochemical processes.

Practicals:

(60 Hours)

Chemical Kinetics

Study the kinetics of the following reactions by integrated rate method:

- a) Acid hydrolysis of methyl acetate with hydrochloric acid.
- b) Compare the strength of HCl and H₂SO₄ by studying the kinetics of hydrolysis methyl acetate.
- c) Initial rate method: Iodide-persulphate reaction
- d) Integrated rate method: Saponification of ethyl acetate.
- e) Study the reaction kinetics of Iodination of acetone.

References:

Theory:

1. Castellan, G.W. (2004), **Physical Chemistry**, Narosa.
2. Kapoor, K.L. (2015), **A Textbook of Physical Chemistry**, Vol 5, 6th Edition, McGraw Hill Education.
3. Kapoor, K.L. (2013), **A Textbook of Physical Chemistry**, Vol 6, 3rd Edition, McGraw Hill Education.

Practicals:

1. Khosla, B.D.; Garg, V.C.; Gulati, A. (2015), **Senior Practical Physical Chemistry**, R. Chand & Co.

Teaching Learning Process:

- Teaching Learning Process for the course is visualized as largely student-focused
- Transaction through an intelligent mix of conventional and modern methods
- Engaging students in cooperative learning.
- Learning through quiz design.
- Problem solving to enhance comprehension.

Assessment Methods: Assessment will be done on the basis of regular class test, presentations and assignments as a part of internal assessment during the course as per the curriculum. End semester university examination will be held for both theory and practical. In practical,

assessment will be done based on continuous evaluation, performance in the experiment on the date of examination and viva voce.

Keywords: Rate Law, Rate constant. Arrhenius Equation, Lambert-Beer's law, Jablonski Diagram

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.