

GENERIC ELECTIVES -16: BASICS OF POLYMER CHEMISTRY

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Basics of Polymer Chemistry (GE-10)	4	2	0	2	Class XII Pass	-----

Learning Objectives

- To help the student to know about the synthesis, properties and applications of polymers.

Learning outcomes

By the end of the course, the students will be able to:

- Know about classification of polymeric material.
- Learn about different mechanisms of polymerization and polymerization techniques
- Evaluate kinetic chain length of polymers based on their mechanism
- Differentiate between polymers and copolymers
- Learn about different methods of finding out average molecular weight of polymer.
- Differentiate between glass transition temperature (T_g) and crystalline melting point (T_m)
- Learn properties and applications of various useful polymers in our daily life

Syllabus Theory:

Unit 1: Introduction to polymers **10 Hours**

Different schemes of classification of polymers, Polymer nomenclature, configuration and conformation of polymers, Molecular forces and chemical bonding in polymers, Texture of Polymers

Functionality and its importance:

Criteria for synthetic polymer formation, basic methods of polymerization processes and their mechanism: addition, condensation, Relationships between functionality, extent of reaction and degree of polymerization.

Unit 2: Properties of Polymers	10 Hours
Glass transition temperature (Tg) and determination of Tg, Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg).	
Crystallization and crystallinity: Determination of crystalline melting point and degree of crystallinity,	
Morphology of crystalline polymers, Factors affecting crystalline melting point.	
Molecular weight distribution and determination of molecular weight of polymers (Mn, Mw, etc.) by end group analysis, viscometry and osmotic pressure methods. Molecular weight distribution and its significance.	

Unit 3: Preparation, properties and applications	10 Hours
Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride), poly(vinyl acetate), acrylic polymers, fluoro polymers, polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novolac), polyurethanes, silicone polymers, polydienes, Polycarbonates, Conducting Polymers: polyacetylene, polyaniline, poly(p-phenylene sulphide, polypyrrole, polythiophene	

Practicals: **(60 Hours)**

Polymer Synthesis

1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA)/MethylAcrylate (MA).
2. Preparation of nylon 6,6
3. Redox polymerization of acrylamide
4. Precipitation polymerization of acrylonitrile
5. Preparation of urea-formaldehyde resin
6. Preparations of novalac resin/resole resin.
7. Microscale Emulsion Polymerization of Poly(methylacrylate).

Polymer characterization

1. Determination of molecular weight of polyvinyl propylidene in water by viscometry.
2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of head-to-head monomer linkages in the polymer.
3. Determination of molecular weight by end group analysis of polymethacrylic acid.

Polymer analysis

1. Estimation of the amount of HCHO in the given solution by sodium sulphite method.
2. Determine the melting point of crystalline polymer.
3. Measurement of glass transition temperature, T_g .

References:

Theory:

1. Carraher, C. E. Jr. (2013), **Seymour's Polymer Chemistry**, Marcel Dekker, Inc.
2. Odian, G. (2004), **Principles of Polymerization**, John Wiley.
3. Billmeyer, F.W. (1984), **Text Book of Polymer Science**, John Wiley.
4. Ghosh, P. (2001), **Polymer Science & Technology**, Tata McGraw-Hill.
5. Lenz, R.W. (1967), **Organic Chemistry of Synthetic High Polymers**, Interscience (Wiley).

Practical:

1. Allcock, H.R.; Lampe, F. W.; Mark, J. E. (2003), **Contemporary Polymer Chemistry**, Prentice-Hall.
2. Fried, J.R. (2003), **Polymer Science and Technology**, Prentice-Hall.
3. Munk, P.; Aminabhavi, T. M. (2002), **Introduction to Macromolecular Science**, John Wiley & Sons.
4. Sperling, L.H. (2005), **Introduction to Physical Polymer Science**, John Wiley & Sons.

Teaching Learning Process:

- Student centred teaching Learning process.
- Blend of conventional blackboard teaching and modern teaching learning tools
- Focus on real life applications of concepts
- Problem solving and quizzes for enhanced understanding of the concepts
- Engaging students in collaborative learning.
- Pre-lab learning of theoretical concept of the experiment.
- Performing the experiment, recording the data, calculating the result.
- Interpreting the result.
- Comparing the results of the class.
- Discussing the sources of error.

Assessment Methods:

- Class Tests at Periodic Intervals.
- Written assignment(s)
- Continuous evaluation of laboratory work and record file.
- Oral assessment, quizzes.
- Mock practical examination.
- Semester end University examination.

Keywords: Bonding, Texture, Polymerization, Crystallization, Properties, Applications.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.