

Practicals/Hands-on Training: (60 Hours)

(Laboratory periods: 60)

1. Determine the calcium and magnesium contents in water samples using EDTA methods.
2. Determine the organic contents and pH of soil sample.
3. Estimate the food adulterants in edible items
4. Quantify the presence metals by flame test method
5. Demonstrate the conversion of PET into bottle into value added products.
6. Determine the quantitative presence of heavy metals like copper and chromium in natural sample like ore.
7. Demonstrate the exothermic and endothermic reaction in laboratory
8. Preparation aspirin and paracetamol as well as identify.
9. Compare the fuel efficiency of biodiesel and petrol.
10. Preparation of representative compound using microwave
11. Demonstrate the biodegradability of natural and synthetic plastics.
12. Demonstrate the protection of rusting of iron after surface spray coating.
13. Estimate the protein contents in edible samples using chemical methods.
14. Small working project on heritage chemistry like bio compatibility of metals and medicinal importance of metals like iron, gold and silver.

References:

1. Lee, J. D., **Concise Inorganic Chemistry**, Wiley India Pvt. Ltd.
2. Sharma, B. K., **Industrial chemistry**, Goel Publishing House, India
3. Christian, Gary D., Dasgupta, Purnendu K., Schug, Kevin A., **Analytical chemistry**, Wiley
4. V. Subramanian, **A text book of Environmental chemistry**, Wiley

GE 19: Radio-chemistry in Energy, Medicine and Environment

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Radio-chemistry in Energy, Medicine and Environment (GE-19)	4	3		1		

Learning Objectives

The Learning Objectives of this course is as follows:

- To give an introduction to nuclear and radiochemical concepts to the students.
- To help students gain fundamental knowledge about the radioisotopes and their real-world applications in medicine, diagnostic techniques, energy, research and environment.

Learning Outcomes

By the end of the course, the students will:

- Learn about radioisotopes, radioactive decay
- Use of radiochemistry in various fields
- Effect of radiations on health
- Learn about nuclear energy and nuclear pollution

SYLLABUS OF GE-19

Theory:

Unit 1: Introduction (9 Hours)

Atoms, composition of nucleus, mass number, isotopes, nuclear stability, radioactive decay, radioactivity in nature: natural and artificial radioisotopes, elementary particles, radioactive decay (α , β and γ decay), half-life period, types of nuclear reactions: nuclear fission and nuclear fusion.

Unit 2: Nuclear power generation (6 Hours)

Nuclear Power generation from uranium ore (energy production and nuclear waste), introduction to nuclear reactors for energy and nuclear weapons

Unit 3: Applications of radiochemistry (15 Hours)

C 14 decay and radioactive dating, irradiation of food, radiotracers for studying chemical reactions (photosynthesis, metabolic studies of drugs, metabolism of organisms, fundamental properties of genetic material), medicinal application of radio chemicals in radiotherapy (use in cancer, hyperthyroidism, blood disorders), radio-pharmaceuticals, diagnostic procedures: CT, PET

Unit 4: Environment radioactivity (6 Hours)

Natural radioactivity, natural process that release radioactive material in environment, man-made events like Chernobyl disaster, bomb test, use of radiotracers in environmental studies.

Unit 5: Nuclear pollution and safety management (9 Hours)

Radiation protection standards, basics of radiation hazards, international guidelines on radiation protection, disposal of nuclear waste, nuclear disaster and its managements, Effect of radiation on health: Biological effects of radiation, radiation monitors, dose limits for workers and public,

Practicals:

(30 Hours)

(Laboratory periods: 30)

1. Study the background radiation in different places and identify the probable source. (Data to be provided).
2. Survey the diagnostic procedures involving radio-chemistry in different diagnostic laboratories.
3. Write a report on the radio isotopes used in various diagnostic procedures.
4. Write a report on safety measures taken in diagnostic labs.
5. Write a report on any two nuclear and radiation accidents focusing on their impact on human life, environment and economy.

References:

1. Nuclear and radiochemistry, Konya J., Nagy N. 2nd Edition, Elsevier
2. Radiochemistry and Nuclear Chemistry, 4th Edition, Choppin G., Lilijenzin J-O, Rydberg J., Ekberg C. Elsevier.

GE 21: Chemistry in Indology and Physical & Mental Well Being

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Chemistry in Indology and Physical & Mental Well Being (GE-21)	4	3		1		

Learning Objectives

The Learning Objectives of this course is as follows:

- To illuminate the students about the scientific basis and approaches related to the practices that promote physical and mental health/balance, that includes meditation,