

6. Brannen, D., Davidsin, P.M., Salminen, T. Thorngate III, J.H. (2002), **Food Additives**, 2nd Edition, CRC Press.
7. Coulte, T. (2016), **Food: The Chemistry of its Components**, 6th Edn., Royal Society of Chemistry.
8. Belitz, H. D.; Grosch, W. (2009), **Food Chemistry**, Springer.
10. Course: FOOD CHEMISTRY (iasri.res.in)

Practical:

1. Ranganna, S. (2017). **Handbook of analysis and quality control for fruits and vegetable products**, 2nd Edn., McGraw Hill Education
2. Sawhney, S.K., Singh, R. (2001), **Introductory Practical Biochemistry**, Narosa Publishing House

GE 12: Chemistry: Statistical Methods and Data Analysis

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Chemistry: Statistical Methods and Data Analysis (GE-12)	4	2		2		

Learning Objectives

The Learning Objectives of this course are as follows:

- To give the students insight about the statistical treatment on the chemical analysis data along with illustration about the analysis of collected analytical data that will help them to take up a job of technician, scientist and laboratory manager.
- To explain the presentation of data in different form such as “Table, Graph, Bar Diagram, Pie Chart, Venn diagram” along with their reliability and validity.

Learning Outcomes

At the end of this course student will be:

- Familiar with interpretation and use of analytical data collected by different techniques, significance of different analytical techniques and their applications, reliability and presentation of data for reporting to different forum.

SYLLABUS OF GE-12

Theory:

Unit 1: Basics of Chemical Analysis (4 Hours)

Analytical Chemistry, Qualitative and quantitative analysis, Analytical methodology. Calibration of glass wares, recording laboratory data.

Unit 2: Different Methods of Chemical Analysis (8 Hours)

Titrimetric method: volumetric titremetry, standard solution, titrimetric curve, calculation; Gravimetric method: precipitation gravimetry, calculation and applications of gravimetry; and Spectrometric methods: introduction, principle and instrument, working quantitative aspects absorbance, applications in chemical analysis

Unit 3: Statistical Method of Chemical Analysis (8 Hours)

Accuracy and Precision, Comparison of precision, Errors, Distribution of random errors, propagation of errors, measurement of errors, significant figure, inter laboratory error, methods of least square analysis of variance, Q test, Z test, T test, statistical treatment of finite sample, recommendations for treating outliers. Minimising errors in analytical procedure.

Unit 4: Data Analysis and Validation (4 Hours)

Confidence interval, Testing of hypothesis, plotting of data, least square method, Figures of merit: sensitivity, detection limit, linear dynamic range, control test, upper control limit and lower control limit, Validation, reporting analytical results and significant figures

Unit 5: Sampling, Standardisation, Labelling and Calibration (6 Hours)

Analytical samples, sample size, constituent sample, real samples, sample, sample handling, preparing laboratory samples, automated sample handling, lab on chip and General laboratory principles, recording laboratory data, standards, comparison of standards, internal standard, external standards calibration, least square method, and multivariate calibration.

Practicals: (60 Hours)

(Laboratory periods: 60)

1. Calibrate the volume of laboratory glass wares i.e. volumetric flask, beaker, burette and calibration constant.
2. Demonstrate the good laboratory practices like effect of dilution, temperature, taking observation, personal and apparatus safety.
3. Determine the quantitative presence of heavy metals like copper, chromium and iron in natural and laboratory samples using volumetric and gravimetric titration.
4. Determine the presence of magnesium ion in heavy water by EDTA method and prepare calibration curve.
5. Evaluate the absolute and method errors in a set of data collected during determination of nitrogen in an organic compound.
6. Calculate the standard deviation and predict precision of analytical results.

7. Determine the concentration of pollutant in natural sample after using external standards methods.
8. Compare the inter laboratory error of a spectroscopic results.
9. Evaluate the limit of detection for colorimetric analysis of dyes and coloured metals in wastes water samples.
10. Demonstrate the control of interference by masking by complexation.
11. Report the ten analytic results in significant numbers along with standard deviation.
12. Determine the confidence limit and interval for a laboratory instrument like breath alcohol analyser
13. Demonstrate the internal standard method for calibration of metal estimation.
14. Estimate the comparative effectiveness of different types of graphs like line, pi chart and bar graph.
15. Demonstrate the working of lab on chip like glucose sensor.

References:

1. Dey, R. A. and Underwood, A. L., **Quantitative Analysis**, 6th Edition, Pearson.
2. Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R., **Fundamental an alytical chemistry**, Thomson Asia Ltd.
3. Encyclopaedia of analytical chemistry: Applications, Theory, and Instrumentation, R A Meyor (Eds) Wiley and Sons (2000).

GE 13: Chemistry: Medicines in Daily Life

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/ Practice		
Medicines in Daily Life (GE-13)	4	2		2		

Learning Objectives

The Learning Objectives of this course are as follows:

- To make students study the basic details about various medicines of general uses, which are crucial for the various diseases.
- To make students learn about the active pharmaceutical ingredient in some medicines, their synthesis; therapeutic effect and side effects on human physiology.