

DISCIPLINE SPECIFIC ELECTIVE COURSE – 3: Programming using MATLAB(INDSE3C)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Programming Using MATLAB (INDSE3C)	04	02	0	02	Course admission eligibility	Basic knowledge of mathematics

Learning Objectives

The Learning Objectives of this course are as follows:

- To familiarize the student with MATLAB software.
- The objective of this lab is to introduce students to the basic operations of MATLAB.
- To enable the student on how to approach solving Engineering problems using simulation tools.
- To prepare the students to use MATLAB in their project works.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Use MATLAB for interactive computations
- Generate plots and exports them for use in reports
- Familiar with inbuilt MATLAB functions and will be able to generate user defined functions for various applications
- Understands fundamental of digital image and signal processing

SYLLABUS OF DSE-3

UNIT – I (8 hours)

Introduction to MATLAB: MATLAB Features, MATLAB Windows, defining variables, variable naming, checking existence, different Operations on variables, clear Operations, data type, precedence, scalar, vectors and Arrays.

UNIT – II (7 hours)

Data and Data Flow in MATLAB: Operators in MATLAB, Matrix operations, Reshaping Matrices, Importing & Exporting of Data, Arrays, Data types, File Input-Output, Communication with External Devices.

Character and Strings: Defining character and string, accessing character or substring 129

from string, string concatenation and comparing, conversion between strings and number. Defining and working with Multidimensional Array and Cell arrays.

UNIT – III **(7 hours)**
Programming: Writing Script Files and Functions files, Error Correction, M-Lint Automatic Code Analyzer, Saving Files. Flow control statement: Conditional or selection, error handling, loop control, program termination. Solution of simultaneous linear equations.

UNIT – IV **(8 hours)**
MATLAB Graphics: Simple Graphics, Graphic Types, Plotting Functions, Creating Plot & Editing Plot, multiple plots, labeling graph, line colors, style and Marker. Introduction of Graphical User Interface (GUI), Generation and implementation of various functions on image.

Practical component: **(60 hours)**

1. Define variables, create a matrix of any size with all possible methods and perform various mathematical operations.
2. Create a multidimensional array and delete any Row/Column from it and create a new array.
3. Plot and label trigonometric functions using subplot command.
4. Generate various kinds of continuous and discrete time signals. Perform time scaling, time shifting and amplitude scaling on them.
5. Generate the (i) square wave and (ii) triangular wave of a specific amplitude and time period and plot it on a single graph.
6. Create a function which compares any two strings of equal length and return 'M' for matched character and 'U' for unmatched Character. Also display the number of characters matched.
7. Generate the (i) square wave and (ii) triangular wave of a specific amplitude and time period and plot it on a single graph.
8. Write a script to test whether a user defined no. is Prime or not.
9. Write a script which can evaluate the percentage (%) and grade of the student when subject marks are entered by the user.
10. Create a function which compares any two strings of equal length and return 'M' for matched character and 'U' for unmatched Character. Also display the number of characters matched.
11. Write a function to generate the AP series.
12. Write a function to generate the GP series.
13. Write a function to generate the Fibonacci series.
14. Write a function to generate the amplitude and frequency modulated signal.

Essential/recommended readings

1. Khanna, M., Bhatt, G. and Kumar, P., MATLAB Essentials for Problem Solving, (2019) PHI Learning, New Delhi.
2. Fausett, L. V., Applied Numerical Analysis Using MATLAB, (2005) Prentice Hall, Upper Saddle River, New Jersey.
3. Linfield, G. & Penny, J., Numerical methods using MATLAB, (2019) Ellis-Horwood.

Suggestive readings

1. Nakamura, S., Numerical Analysis and Graphic Visualization with MATLAB - Second Edition, Prentice Hall PTR, Upper Saddle River, New Jersey

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENTS

GENERIC ELECTIVES (GE-3):

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Virtual Instrumentation (INGE3A)	04	02	0	02	Course admission eligibility	Basic knowledge Electronics

Learning Objectives

The Learning Objectives of this course are as follows:

- To study the basic structure of virtual instrumentation
- To learn the basic programming concepts in LabVIEW
- To understand the basics of data acquisition for designing a Virtual Instrument

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the importance and applications of Virtual Instrumentation
- Learn the basic programming concepts in LabVIEW
- Recognize the components of Virtual instrumentation and use them for PC Based measurement

SYLLABUS OF GE-3

UNIT – I

(8 hours)

Graphical System Design: Graphical system design model, Design flow with GSD, 131