

Suggestive readings

1. Nakamura, S., Numerical Analysis and Graphic Visualization with MATLAB - Second Edition, Prentice Hall PTR, Upper Saddle River, New Jersey

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENTS

GENERIC ELECTIVES (GE-3):

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/Practice		
Virtual Instrumentation (INGE3A)	04	02	0	02	Course admission eligibility	Basic knowledge Electronics

Learning Objectives

The Learning Objectives of this course are as follows:

- To study the basic structure of virtual instrumentation
- To learn the basic programming concepts in LabVIEW
- To understand the basics of data acquisition for designing a Virtual Instrument

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the importance and applications of Virtual Instrumentation
- Learn the basic programming concepts in LabVIEW
- Recognize the components of Virtual instrumentation and use them for PC Based measurement

SYLLABUS OF GE-3

UNIT – I

(8 hours)

Graphical System Design: Graphical system design model, Design flow with GSD, 131

Virtual Instrumentation, Virtual instrument, and traditional instrument, Hardware and software in virtual instrumentation, Virtual instrumentation for Test, control & design, Graphical system design using LABVIEW, Graphical programming & textual programming.

UNIT – II **(7 hours)**

LabVIEW Basics: Introduction, advantages of LABVIEW software environment, palettes, front panel controls & indicators, Block diagram, Data flow program. **Repetition and Loops:** For loops, while loops, structure tunnels, terminals inside or outside loops, shift registers, feed-back nodes, control timing, case structure.

UNIT – III **(8 hours)**

Arrays and Clusters: Arrays, Introduction, arrays in LABVIEW, creating one – dimensional array controls, indicators, and constants, creating two-dimensional arrays, creating multidimensional arrays, initializing array, deleting, inserting, and replacing elements, rows, columns, and pages within arrays, arrays functions. **Clusters:** Cluster controls and indicator, order of cluster elements, Cluster operations.

Plotting Data: Types of waveforms, waveform graphs, waveform charts, XY graphs, Intensity graphs & charts, Digital waveform graphs, 3D graphs, customizing graphs & charts, configuring a graph or chart, Displaying special plotters on the XY graph.

UNIT – IV **(7 hours)**

File Input/ Output: File formats, file write & read, generating filenames automatically, String handling, string functions, LABVIEW string formats, parsing of strings. **Instrument Control:** Introduction, GPIB communication, Hardware specification, software architecture, Instrument I/O assistant, VISA, Instrument drivers, serial port communications, using other interfaces.

Practical component: **(60 hours)**

1. Build a VI to compute the expressions $Y = (A * B * C) + (D * E)$ and $Y = mx + c$.
2. Split an input string into two outputs with reference to a separating character. Find the length of the input string and reverse the string.
3. Build a VI to perform various Boolean Operations (AND, OR, NAND, NOR, XOR).
4. Write a program in LabVIEW to find whether the given number is odd or even.
5. Create a VI to find the sum of first n natural numbers using a While Loop with a feedback node.
6. Create a VI to compute full adder logic using half adder logic as subVI.
7. Write a program in LabVIEW to find the square of the numbers from 1 to 100 using (a) a For Loop and (b) a While Loop.
8. Create a VI to compare the element of two clusters if the value of the corresponding elements are the same switch on LED in the output cluster.
9. Create a VI to compare clusters and Switch ON an LED in the output cluster if the nth element of cluster 1 is greater than the nth element of cluster 2.
10. Create a 2D numeric array (5 x 5) containing random numbers and find its transpose.
11. Create a VI to read a two-dimensional array and find the sum of the elements

in the row-wise and column-wise separately and display the sums of the rows and columns.

12. Create a 1D array and find its reverse.
13. Build a VI to plot a circle in the XY graph using a For Loop.
14. Build a VI that generates a 1D array of random numbers and sort the ascending descending array and also find the max. and min. value array element.
15. Build a cluster control that consists of a seven-segment LED display, a switch, a string control, and numeric control. Split the cluster elements using the Unbundle function and alter the values of some of the cluster controls. Bundle them again and display in a cluster indicator.
16. Using For loop determine the number of odd numbers between a range of numbers entered by the user.
17. Build a VI to plot different colors in an intensity graph using an array.
18. Create a VI to check whether the cluster elements are in range or not. Specify the upper and lower limits. Display the coerced output and a cluster of LEDs to indicate whether a particular cluster element is in the range or not.
19. Write a program to solve $x^2+bx+c=0$.
20. Build a VI to generate two waveforms of different amplitude and frequencies add the signal to find the resultant and plot it on a separate waveform graph.
21. Create a VI to read a two-dimensional array and find the sum of the elements in the row-wise and column-wise separately and display the sums of the rows and columns.

Essential/recommended readings

1. Jovitha Jerome, Virtual Instrumentation Using Labview, PHI Learning Pvt. Ltd. (2010)
2. John Essick, Hands-on Introduction to LabVIEW for Scientists and Engineers, 3rd Edition, 2015.
3. Gupta, Virtual Instrumentation Using Labview 2E, McGraw Hill. (2010)

Suggestive readings

1. Jeffrey Travis, LabVIEW for everyone, Prentice-Hall PTR, 2007.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES (GE-3): Industrial and environmental techniques (INGE3B)

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/		