

**DISCIPLINE SPECIFIC ELECTIVE COURSE – 5:
PLANT-PATHOGEN INTERACTIONS**

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
MICROB-DSE 5: PLANT-PATHOGEN INTERACTIONS	4	2	0	2	Class XII pass with Biology/ Biotechnology/ Biochemistry	NIL

Learning Objectives

The Learning Objectives of this course are as follows:

- The main objective of this course is to provide the students with an overview of the interactions of pathogenic microbes with their host plants, and how these interactions lead to plant disease. The students will become aware of the biochemical basis of plant-pathogen interactions, the production of virulence factors by pathogens, and the defence mechanisms induced in plants in response to infection.
- They will learn about the genetic basis of disease resistance. They will be able to identify plant pathogens from the symptoms and microscopic study of infected plant specimens.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Student will be able to explain the important terms related to plant diseases, the scientific contributions of prominent plant pathologists, how microbes attack plants using enzymes, toxins, growth regulators etc., thereby affecting their physiological processes.
- Student will be able to explain describe how plants defend themselves upon attack by pathogens with help of Case studies of some important plant diseases.
- Student will be able to describe the genetics of plant disease and resistance, and developing disease-resistant transgenic plants.

- Student will be able to identify plant pathogens by observing symptoms of diseased plants, cutting sections/ preparing whole mounts of diseased plant material, and observing microscopically.
- Student will be able to explain the etiology, symptoms and control measures of specific bacterial, phytoplasma, virus and viroid diseases with the help of photographs of diseased plants, common disease symptoms observed in locally grown plants during a field visit.
- Student will be able to explain the concept of Koch's postulates using pathogen-infected plant material.

Contents:

Theory: **30 hours**

Unit 1: (5 hours)

Introduction to plant pathology: Concepts and history: Concept of disease and pathogenesis. Causal organisms and symptoms associated with common plant diseases: rust, smut, blight, chlorosis, necrosis, gall, mosaic and wilt. Contributions of the following plant pathologists: E. J. Butler, Anton DeBary, Alexis Millardet, E. Smith, T. O. Diener, E. C. Stakman, J. E. Vanderplank, B. B. Mundkur, J. F. Dastur.

Unit 2: (19 hours)

Physiochemical basis of host-pathogen interactions: Virulence factors of pathogens - Enzymes: pectinases, cellulases. Toxins: host-specific (HV, T-toxin) and non-specific (tabtoxin, tentoxin). Growth regulators: auxin, gibberellin. Virulence factors in viruses: replicase, coat protein, silencing suppressors. Host physiological processes affected by pathogens - photosynthesis, respiration, cell membrane permeability, translocation of water and nutrients, plant growth and reproduction. Defense mechanisms in plants - Inducible structural defenses (histological: cork layer, abscission layer, tyloses, gums), inducible biochemical defenses (hypersensitive response (HR), systemic acquired resistance (SAR), phytoalexins, pathogenesis-related (PR) proteins). Study of some important diseases (etiology, epidemiology, symptoms and control measures): bacterial (crown gall), fungal (black stem rust of wheat), viral (Tobacco mosaic virus, Banana bunchy top).

Unit 3: (6 hours)

Genetics of plant disease resistance: Gene for gene hypothesis: concept of resistance (R) gene and avirulence (avr) gene, the gene for gene hypothesis. Types of plant resistance: true resistance— horizontal and vertical, apparent resistance— disease escape, disease tolerance. Genetic engineering for disease resistance in plants: with plant-derived genes and pathogen-derived genes.

Practicals:

Duration: 60 hours

Unit 1: (24 hours)

Identification of plant pathogens examining infections microscopically: Principle and working method of lactophenol cotton blue staining. Preparation of whole mount of plant material, followed by staining with lactophenol cotton blue and microscopic observation for identification of the pathogen. Cutting fine transverse sections of infected plant material, staining with lactophenol cotton blue and observing the slide microscopically for identification of the pathogen. Any four from: *Albugo/ Puccinia/ Ustilago/ Phytophthora/ Fusarium/ Peronospora*.

Unit 2: (24 hours)

Study of plant diseases: Study of the etiology, symptoms and control measures of the following diseases. Bacterial: angular leaf spot of cotton, citrus canker. Phytoplasma: aster yellow, citrus stubborn. Viral: rice tungro disease, papaya ring spot, leaf curl of tomato. Viroid: potato spindle tuber, coconut cadang cadang disease. Field visit to a local park/college garden, to study common plant disease symptoms in plants. Recording observations in files with photographs of the diseased plants. **Study research study project:** History, etiology, symptoms, control measures, and economic impact if any, of any four rare plant diseases.

Unit 3: (12 hours)

Demonstration of Koch's postulates using a fruit/ vegetable infected with a plant pathogen: Observation of symptoms, isolation of pathogen by inoculation on potato dextrose agar plates, microscopic identification of the pathogen. Reinoculating it on a healthy fruit/vegetable to observe for similar symptoms, followed by reisolating it and observing microscopically in order to prove Koch's postulates.

Suggested Reading (Theory & Practical):

1. Fundamental of Plant Pathology Practical Manual by S. Singh, A. Kumar, A.K. Mishra. 1st edition. Deepika Book Agency, India. 2021.
2. Practical lab manual for Microbiology and Plant pathology by Huma Naaz, Hadi Husain Khan, Chandan Kumar Singh. 1st edition. AkiNik Publications, India. 2018.
3. Plant Diseases by R.S. Singh. 10th edition. MedTech, India. 2017.
4. Introduction to Principles of Plant Pathology by R.S. Singh. 5th edition. MedTech, India. 2017.

5. Plant Pathology by R.S. Mehrotra and A. Aggarwal. 3rd edition. Tata McGraw-Hill Education, India. 2017.
6. Diseases of Crop Plants in India by G. Rangaswami and A. Mahadevan. 4th edition. Prentice Hall, India. 2005.
7. Plant Pathology by G. N. Agrios. 5th edition. Elsevier Academic Press, USA. 2005.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.