

**DISCIPLINE SPECIFIC ELECTIVE COURSE – 9:
AGRICULTURAL MICROBIOLOGY**

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
MICROB-DSE 9: AGRICULTURAL MICROBIOLOGY	4	2	0	2	Class XII pass with Biology/ Biotechnology/ Biochemistry	NIL

Learning Objectives

The Learning Objectives of this course are as follows:

- The main objective of this paper is to enable students to develop a clear understanding of the importance of microbes in agriculture to enable them to find eco-friendly solutions to agricultural problems.
- Students will get an overview of soil characteristics and the role of microbes and plant-microbe interactions in soil fertility. Students will study about the production and application of different types of commercial biofertilizers, become familiar with microbial biocontrol agents, and gain knowledge of composting, and organic farming. They will gain insights into recent trends in agriculture including agrowaste management and transgenics

Learning outcomes

The Learning Outcomes of this course are as follows:

- Student will be able to explain types of soil and its characteristics, important microorganisms involved in mineralization of essential nutrients present in the soil and their significance in agriculture, plant-microbe interactions including symbiotic and asymbiotic associations, the commercial production of biofertilizers and method of composting.

- Student will be able to describe eco-friendly ways to control agricultural pests and pathogens, the mode of action, mass production and field applications of various biocontrol agents.
- Student will be able to discuss the recent trends in agricultural microbiology with reference to agrowaste management, organic farming and transgenic plants.
- Student will be able to demonstrate the isolation and screening of various microbes important in soil fertility (PGPR, VAM), the isolation of microorganisms from commercially available biofertilizers.
- Student will be able to explain the different stages of nodule development in leguminous plant roots and will observe nodule-forming bacteria under the microscope, the antagonistic potential of *Trichoderma* spp. as biological control agent against other fungi.
- Student will be able to describe composting as one of the ways of agrowaste management, the role of thermophiles in composting and the different enzymes involved in biodegradation, steps of mass production of blue green algae and application of microbes in organic farming/biogas production.

Theory: **30 hours**

Unit 1: (14 hours)

Soil fertility and Biofertilizers: Physical and chemical characteristics of different types of soil. Macro and micronutrients in soil. Role of NPK and biogeochemical cycles in soil fertility. Scope of microbes as biofertilizers and their advantages over chemical fertilizers. Isolation, characteristics, mass production and field applications of biofertilizers- Symbiotic: *Rhizobium*, *Frankia*, *Acetobacter diazotrophicus*, *Anabaena*, Mycorrhizal associations with special emphasis on VAM/AM fungi. Asymbiotic: Nitrogen-fixing bacteria (*Azospirillum*, *Azotobacter*), Plant growth promoting rhizobacteria (PGPR). Composting: types, methods, applications.

Unit 2: (8 hours)

Biocontrol agents and Biopesticides: Importance, potential and types of biocontrol agents. Microbes used as biopesticides, their mode of action, and advantages over chemical pesticides. Mass production and field applications of *Bacillus thuringiensis*, *Baculoviruses*, *Beauveria bassiana*, *Metarhizium anisopliae* and *Trichoderma* spp.

Unit 3: (8 hours)

Recent trends in Agriculture Microbiology: Agrowaste management and its significance: Biofuel, Bioenergy, Animal Feed. Organic farming: types, methods and advantages. Development of transgenic plants: *Agrobacterium*-mediated plant transformations with specific example of Bt cotton.

Practicals: **60 hours**

Unit 1: (28 hours)

Isolation of microbes important in soil fertility: Isolation and screening of plant growth promoting rhizobacteria (PGPR) from soil. Isolation of microbes from commercially available biofertilizers using solid media. Isolation of VAM spores from the soil sample using “Wet-sieving and decanting technique” for spores extraction and observing them under microscope. Study of VAM colonization using temporary slides/photographs.

Unit 2: (16 hours)

Study of microbe interactions in soil: Demonstration of stages of nodule formation in leguminous plant with the help of photographs. Slide preparation of crushed nodule to observe nodule forming bacteria. Study of antagonistic activity of *Trichoderma* sp. against different fungi (any 2) using dual culture plate technique. Test of antagonistic efficacy on potato dextrose agar: simultaneous inoculation of antagonist and test fungus at two extreme positions and recording of zone of inhibition after 5 days of incubation.

Unit 3: (16 hours)

Agrowaste management: Hands-on training in composting using a variety of plant/food waste. Isolation of thermophiles from compost and qualitative assay of any two enzymes (amylase/cellulase/xylanase) using compost sample. Visit to mass production facility of blue green algae/biogas plant/organic farm.

Suggested Reading (Theory & Practical):

1. Benson's Microbiological Applications, Laboratory Manual in General Microbiology by A. E. Brown and H. Smith. 15th edition. McGraw-Hill Education, USA. 2022.
2. Biopesticides and Bioagents: Novel tools for pest management by M. A. Anwer. 1st edition. Apple Academic Press, USA. 2021.
3. Bioprocess Technology by P. T. Kalaichelvan and I. A. Pandi. 1st edition. MJP Publishers, India. 2021 (reprint).
4. Microbiology: A Laboratory Manual by J. Cappuccino and C.T. Welsh. 12th edition. Pearson Education, USA. 2020.
5. Soil Microbiology by N.S. Subba Rao. 5th edition. Oxford & Ibh Publishing, USA. 2020.
6. Prescott's Microbiology by J. M. Willey, K. Sandman and D. Wood. 11th edition. McGraw Hill Higher Education, USA. 2019.

7. Biofertilizers in Agriculture and Forestry by N.S. Subba Rao. 4th edition. Medtech. India. 2019.
8. Advances in soil microbiology: recent trends and future prospects by T.K. Adhya, B. Lal, B. Mohapatra, D. Paul and S. Das. Volume 2. Springer, Singapore. 2018.
9. Experiments in Microbiology, Plant Pathology and Biotechnology by K. R. Aneja. 5th Edition. New Age International Publishers, India. 2017.
10. Development of Bioinsecticides by F. Saleem A.R. Shakoori. Lap Lambert Academic Publishing, European Union. 2012.
11. Advanced Environmental Biotechnology by S.K. Aggarwal. 1st edition. APH publication, India. 2005.
12. Biotechnology of Biofertilizers edited by S. Kannaiyan. 1st edition. Springer, Netherlands. 2002.
13. Bioinoculants for Sustainable Agriculture and Forestry by S.M. Reddy. 1st edition Scientific Publishers, India. 2002.
14. Microbial Ecology: Fundamentals and Applications by R.M. Atlas and R. Bartha. 4th edition. Benjamin Cummings, USA. 2000.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.