

**DISCIPLINE SPECIFIC ELECTIVE COURSE – 14:
ADVANCES IN MICROBIOLOGY**

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
MICROB-DSE 14: ADVANCES IN MICROBIOLOGY	4	2	0	2	Class XII pass with Biology/ Biotechnology/ Biochemistry	NIL

Learning Objectives

The Learning Objectives of this course are as follows:

- The main objective of this course is to educate students about the latest developments in the field of microbiology and apprise them of the cutting-edge technologies being used for research and development.
- They will learn the uses of omics approaches, meta-omics, systems biology, and synthetic biology. They will become familiar with the development and applications of CRISPR-Cas technology and will gain insights into the versatile field of microbial nanotechnology.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Student will be able to discuss the host-microbe arms race, newer methods to combat challenges of antimicrobial resistance and biofilms, the use of meta-omics approaches in research, latest cutting-edge technology of CRISPR-Cas and its applications.
- Student will be able to explain the Systems and Synthetic Biology and their applications; the principles, techniques, and applications of the versatile field of nanobiotechnology.
- Student will be able to demonstrate soil metagenomics and PCR-based taxonomy analysis, and describe major metagenomics projects worldwide through case studies.
- Student will be able to demonstrate synthesis and testing of silver nanoparticles with antimicrobial properties from plant, fungal/bacterial

extracts; and explain about the analytical research tools to characterize the nanoparticles.

- Student will be able to describe Poliovirus synthesis, mRNA vaccine synthesis and Genome synthesis of mycoplasma through case studies.

Contents:

Theory: 30 hours

Unit 1: (10 hours)

Host- microbe interactions and use of microbes in healthcare: Host-Microbe arms race, genome- pathogenicity islands, Type Three Secretion System (T3SS), Quorum Sensing, and Biofilm formation in bacteria. Viral zoonosis and pandemics. Gene for Gene hypothesis, hypersensitive response, plant resistance genes, and signal transduction mechanism. Addressing the challenges of Anti-Microbial Resistance (AMR) and biofilms by phages, and of cancer through oncolytic viruses.

Unit 2: (10 hours)

Modern molecular techniques in Microbiology: Meta-Omics technology (Metagenomics, Metatranscriptomics, Metaproteomics, and Metabolomics): Principles, techniques deployed, and applications. CRISPR-Cas technology- History, mechanism, applications (in Health, Agriculture and other Industries) and limitations of this technology.

Unit 3: (10 hours)

Systems biology, Synthetic biology, and Nanobiotechnological Approaches in Microbiology: Systems biology approach for holistic perspectives and better outcomes. Types of Biological Networks. Cell signaling and interaction networks. Synthetic biology: principles and applications. Concept, methodology, and applications of Microbial Nanotechnology in health, agriculture, and food industry. Applications of Viral and Viral-like Nanoparticles.

Practicals: 60 hours

Unit 1: (20 hours)

Metagenomic technique to study soil microorganisms: Hands-on training in extraction of DNA from soil, and PCR amplification of metagenomic DNA using universal 16S ribosomal gene primers. **Student group project:** Research and review on major metagenomic projects (Sargasso Sea Project, Viral Metagenomics and Human Microbiome Project)

Unit 2: (25 hours)

Synthesis and analysis of silver nanoparticles from plants extracts and microbes (fungi/bacteria). Hands-on training in synthesis of silver nanoparticles by any one method. Testing of antimicrobial properties of synthesized silver nanoparticles. Characterization of nanoparticles by UV-vis Spectroscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM and TEM) through virtual labs / videos. Visit to Sophisticated Instrumentation Facility of a research institution.

Unit 3: (15 hours)

Student research study project: Poliovirus Synthesis: a case study to understand how the poliovirus was synthesized in the laboratory. mRNA-Vaccine Synthesis: a case study of the steps involved in synthesis of mRNA vaccine and testing its efficacy. **Student group project:** Covid19 mRNA vaccines in the market in India and overseas. Genome synthesis of mycoplasma: a case study to develop a synthetic genome of mycoplasma.

Suggested Reading (Theory & Practical):

1. Brock Biology of Microorganisms by M.T. Madigan, and J.M. Martinko. 16th edition. Pearson., USA. 2021.
2. Microbiomes: Current Knowledge and unanswered Questions by E. Rosenberg. Springer Nature, Switzerland. 2021.
3. An Introduction to Systems Biology: Design, Principles of Biological Circuits by Uri Alon, 2nd edition. CRC Press. 2020.
4. Antimicrobial Resistance: Global Challenges and Future Interventions edited by Sabu Thomas. Springer. 2020.
5. Biological Synthesis of Nanoparticles and Their Applications, by L. Karthik, A. Vishnu Kirthi, S. Ranjan, V. M. Srinivasan. CRC Press, Taylor and Francis, USA. 2020
6. Genomic Engineering via CRISPR-Cas 9 system edited by Vijay Singh and Pawan K. Dhar. Academic Press. 2020
7. Microbial Nanotechnology edited by M. Rai and Golinsky P. CRC Press. 2020
8. Bacterial Pathogenesis: A Molecular Approach by B.A. Wilson, A.A. Salyers, D. D. Whitt, and M.E. Winkler. 4th edition. ASM Press, USA. 2019.
9. Implications of Quorum Sensing and Biofilm formation in Medicine, Agriculture and Food Industry by P. V. Bramhachari. Springer. 2019.
10. Nanotechnology in Food: Concepts, Applications, and Perspective by H.J. Malmiri. Springer. 2019.
11. Quorum Sensing: Molecular Mechanism and Biotechnological Applications by G. Tommonaro. Academic Press, USA. 2019.
12. Agricultural Nanobiotechnology: Modern Agriculture for a Sustainable Future by F. Lopez-Valdez and F. Fernandez-Luqueno. Springer. 2018.

13. Implications of Quorum Sensing System in Biofilm Formation and Virulence by Bramhachari. Springer. 2018.
14. Nanobiotechnology: Human Health and the Environment by A. Dhawan, S. Singh, A. Kumar, and R. Shanker (editors). CRC Press, USA. 2018.
15. Synthetic Biology: Omics Tools and their Applications by Shailza Singh. Springer. 2018
16. Viral Metagenomics: Methods and Protocol by V. Pantaleo and M. Chiumenti. Springer Protocols. Humana Press. 2018.
17. Virus Derived Nanoparticles for Advanced Technologies-Methods and Protocols by C. Wege and G. Lomonosoff. Humana Press, Springer, USA. 2018.
18. Microbial Biofilms: Omics Biology, Antimicrobials and Clinical Implications by C. J. Seneviratne. CRC Press. 2017.
19. Precision Medicine, CRISPR, and Genome Engineering: Moving from Association to Biology and Therapeutics by S. H. Tsang. Springer. 2017.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.