

B.Sc. (Honours) Physics

DISCIPLINE SPECIFIC ELECTIVE COURSE - DSE 23: PLASMA PHYSICS

Course Title and Code	Credits	Credit Distribution of the Course			Pre-requisite of the course
		Lecture	Tutorial	Practical	
Plasma Physics DSE 23	4	3	1	0	DSC 13 - Electromagnetic Theory (Sem. V) and DSC 8 - Thermal Physics (Sem. III) of this program or its equivalent.

COURSE OBJECTIVES

This course presents the characteristic plasma properties and theoretical approaches to plasma physics. It treats single charged-particle motion in electromagnetic fields, collisions, electrical conductivity and diffusion, and plasma waves. Applications to controlled thermonuclear fusion, plasma processing, and astrophysical plasmas will serve to illustrate when and where the various theories are applicable.

LEARNING OUTCOMES

At the end of the course, the students will be able to:

- define, using fundamental plasma parameters, under what conditions an ionised gas consisting of charged particles (electrons and ions) can be treated as a plasma.
- know various applications of plasma physics.
- determine the drift velocities of charged particles moving in electric and magnetic fields that are either uniform or vary slowly in space and time.
- distinguish the single particle approach, fluid approach to describe different plasma phenomena and formulate the conditions for a plasma to be in a state of perfect thermodynamic equilibrium.
- apply the conservation laws and Maxwell's equations to describe dynamical processes like wave propagation in a plasma.

SYLLABUS OF DSE 23 **THEORY COMPONENT** **(Hours: 45)**

Unit I **(12 Hours)**

Introduction to plasma: Basics of gas dynamics, occurrence of plasma in nature, concept of temperature and density of plasma, Saha's equation, quasineutrality in plasma, collective behaviour, Debye shielding, Microscopic Properties (resistivity and conductivity).

Unit II **(8 Hours)**

Plasma applications and measurement: Gas discharge, industrial plasma, ionosphere plasma, solar plasma, plasma processing of materials, laser ablation, laser-driven fusion, magnetic fusion, plasma propulsion. Basics of Plasma production in laboratory and diagnostics

Unit III **(13 Hours)**

Particle confinement: Single particle motion in the presence of uniform and non-uniform electric and magnetic field, Grad-B drift, curvature drift, polarization drift, Magnetic mirrors and concept of earth magnetic mirror, Basic concept of controlled thermonuclear fusion.

Unit IV **(12 Hours)**

Fluid description of plasma: Set of fluid equations of plasmas, diamagnetic drift of plasma, plasma approximation, waves in cold plasmas, plasma oscillations, electron plasma wave, ion acoustic wave, electromagnetic wave in unmagnetized plasma.

REFERENCES

1. Introduction to Plasma Physics and Controlled Fusion by F. F. Chen (Third Edition 2016).
2. The Physics of Plasmas, by T. J. M. Boyd and J. J. Sanderson. Cambridge University Press, 2003.
3. Introduction to Plasma Physics, R.J. Goldston and P. H. Rutherford (IOP, 1995).
4. Fundamentals of Plasma Physics -J. A. Bittencourt, Springer, New York, NY (Third edition).
5. The physics of fluids and plasmas: an introduction for astrophysicists – Arnab Rai Choudhuri, Cambridge University Press (1998)
6. Principles of Plasma Physics, N.A. Krall and A.W. Trivelpiece, Mc Graw Hill (1973).
7. Principles of Plasma Discharges and Materials Processing (Second Edition, 2005) by Lieberman, Lichtenberg.