

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 8: COMMUNICATION SYSTEM

Course Title & Code	Credits	Credit distribution of the course			Eligibility Criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical		
Communication System DSE – 8	4	2	0	2	Class XII pass with Physics and Mathematics as main subjects	Basics of Digital Electronics and Analog Electronics

LEARNING OBJECTIVES

This paper aims to describe the fundamental concepts of communication systems and communication techniques based on Analog Modulation, Analog and digital Pulse Modulation. Communication and Navigation systems such as GPS and mobile telephony system are also introduced. This paper will essentially connect the text book knowledge with the most popular communication technology in real world.

LEARNING OUTCOMES

At the end of this course, students will be able to,

- Understand fundamentals of electronic communication system and electromagnetic communication spectrum with an idea of frequency allocation for radio communication system in India.
- Gain an insight on the use of different modulation and demodulation techniques used in analog communication
- Learn the generation and detection of a signal through pulse and digital modulation techniques and multiplexing.
- Gain an in-depth understanding of different concepts used in a satellite communication system.
- Study the concept of Mobile radio propagation, cellular system design and understand mobile technologies like GSM and CDMA.
- In the laboratory course, students will apply the theoretical concepts to gain hands-on experience in building modulation and demodulation circuits; Transmitters and Receivers for AM and FM. Also to construct TDM, PAM, PWM, PPM and ASK, PSK and FSK modulator and verify their results.

SYLLABUS OF DSE - 8

THEORY COMPONENT

Unit – I - Electronic communication and analog modulation (8 Hours)

Electronic communication: Introduction to communication – means and modes. Need for modulation. Block diagram of an electronic communication system, channels and base-band signals

Analog Modulation: Amplitude modulation, modulation index and frequency spectrum. Generation of AM (emitter modulation), amplitude demodulation (diode detector), Single sideband (SSB) systems, advantages of SSB transmission, frequency modulation (FM) and

phase modulation (PM), modulation index and frequency spectrum, equivalence between FM and PM.

Unit – II - Analog Pulse Modulation (4 Hours)

Sampling theorem, basic principles - PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing (time division multiplexing and frequency division multiplexing)

Unit – III - Digital Pulse Modulation (10 Hours)

Need for digital transmission, pulse code modulation, digital carrier modulation techniques, sampling, quantization and encoding, concept of amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK), and binary phase shift keying (BPSK)

Unit – IV - Satellite Communication and Mobile Telephony system (8 Hours)

Satellite communication: Need for satellite communication, geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Transponders (C - Band), uplink and downlink, Ground and earth stations

Mobile Telephony System: Concept of cell sectoring and cell splitting, SIM number, IMEI number, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset.

References:

Essential Readings:

- 1) Electronic Communications, D. Roddy and J. Coolen, Pearson Education India.
- 2) Advanced Electronics Communication Systems, Tomasi, 6th edition, Prentice Hall.
- 3) Electronic Communication systems, G. Kennedy, 3rd edition, 1999, Tata McGraw Hill.
- 4) Principles of Electronic communication systems, Frenzel, 3rd edition, McGraw Hill
- 5) Modern Digital and Analog Communication Systems, B. P. Lathi, 4th edition, 2011, Oxford University Press.
- 6) Communication Systems, S. Haykin, 2006, Wiley India
- 7) Wireless communications, A. Goldsmith, 2015, Cambridge University Press

Additional Readings:

- 1) Electronic Communication, L. Temes and M. Schultz, Schaum's Outline Series, Tata McGraw- Hill.
- 2) Electronic Communication Systems, G. Kennedy and B. Davis, Tata McGraw-Hill
- 3) Analog and Digital Communication Systems, M. J. Roden, Prentice Hall of India

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be performed from the following list

- 1) To design an amplitude modulator using transistor
- 2) To design envelope detector for demodulation of AM signal
- 3) To study FM - generator and detector circuit
- 4) To study AM transmitter and receiver
- 5) To study FM transmitter and receiver
- 6) To study time division multiplexing (TDM)
- 7) To design pulse amplitude modulator using transistor.

- 8) To design pulse width modulator using 555 timer IC.
- 9) To design pulse position modulator using 555 timer IC
- 10) To study ASK, PSK and FSK modulators and demodulators

References for laboratory work:

- 1) Electronic Communication system, Blake, 5th edition, Cengage
- 2) Introduction to Communication systems, U. Madhow, 1st edition, 2018, Cambridge University Press