

GENERIC ELECTIVES (GE - 2): MATHEMATICAL PHYSICS

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/ Practice		
Mathematical Physics GE – 2	4	3	1	0	Class XII pass	NIL

Learning Objectives

The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists. The course will expose students to fundamental computational physics skills and hence enable them to solve a wide range of physics problems.

Learning Outcomes

At the end of this course, the students will be able to,

- Understand functions of several variables.
- Represent a periodic function by a sum of harmonics using Fourier series and their applications in physical problems such as vibrating strings etc.
- Obtain power series solution of differential equation of second order with variable coefficient using Frobenius method.
- Understand properties and applications of special functions like Legendre polynomials, Bessel functions and their differential equations and apply these to various physical problems such as in quantum mechanics.
- Learn about gamma and beta functions and their applications.
- Solve linear partial differential equations of second order with separation of variable method.
- Understand the basic concepts of complex analysis and integration.
- During the tutorial classes, students' skill will be developed to solve more problems related to the concerned topics.

SYLLABUS OF GE – 2

THEORY COMPONENT

Unit 1:

(6 Hours)

Fourier series: Periodic functions. Orthogonality of sine and cosine functions, Convergence of Fourier series and Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Even and odd functions and their Fourier expansions (Fourier Cosine Series and Fourier Sine Series).

Unit 2:**(10 Hours)**

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre and Bessel Differential Equations.

Unit 3:**(14 Hours)**

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of integrals in terms of Gamma Functions.

Partial Differential Equations: Multivariable functions, Partial derivatives, Functions Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular geometry, Solution of 1D wave equation.

Unit 4:**(15 Hours)**

Complex Analysis: Functions of complex variable, limit, continuity, Analytic function, Cauchy-Riemann equations, singular points, Cauchy Goursat Theorem, Cauchy's Integral Formula, Residues, Cauchy's Residue Theorem.

Essential readings:

- 1) Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- 2) Complex Variables and Applications, J. W. Brown and R. V. Churchill, 7th Ed. 2003, Tata McGraw-Hill
- 3) Advanced Mathematics for Engineers and Scientists: Schaum Outline Series, M. R Spiegel, 2009, McGraw Hill Education.
- 4) Applied Mathematics for Engineers and Physicists, L.A. Pipes and L.R. Harvill, 2014, Dover Publications.
- 5) Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd Ed., 2006, Cambridge University Press.

Suggestive readings

- 1) Mathematical Physics, A. K. Ghatak, I. C. Goyal and S. J. Chua, 2017, Laxmi Publications Private Limited.
- 2) Advanced Engineering Mathematics, D. G. Zill and W. S. Wright, 5 Ed., 2012, Jones and Bartlett Learning.
- 3) An introduction to ordinary differential equations, E. A. Coddington, 2009, PHI Learning.
- 4) Differential Equations, George F. Simmons, 2007, McGraw Hill.
- 5) Mathematical methods for Scientists and Engineers, D. A. Mc Quarrie, 2003, Viva Books