

Life Insurance

Life Insurance: Models for insurance payable at the moment of death, insurance payable at the end of the year of death and their relationships. Life annuities: continuous life annuities, discrete life annuities. Premiums: continuous and discrete premiums.

PRACTICAL/LAB WORK – (30 hours)

List of Practical:

1. Risk computation for different utility models.
2. Discrete and continuous risk calculations.
3. Calculation of aggregate claims for collective risks.
4. Calculation of aggregate claim for individual risks.
5. Computing Ruin probabilities and aggregate losses.
6. Annuity and present value of contract.
7. Computing premium for different insurance schemes.
8. Practical based on life models and tables.

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

ESSENTIAL READINGS

- Dickson, C. M. D. (2005): Insurance Risk And Ruin (International Series On Actuarial Science), Cambridge University Press. Bowers, N. L., Gerber, H. U., Hickman,
- Atkinson, M.E. and Dickson, D.C.M. (2011): An Introduction to Actuarial Studies, Elgar Publishing.

SUGGESTIVE READINGS

- J. C., Jones, D. A. And Nesbitt, C. J. (1997): .Actuarial Mathematics, Society Of Actuaries, Itasca, Illinois, U.S.A.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

DISCIPLINE SPECIFIC ELECTIVE COURSE– 3B: SIMULATION TECHNIQUES IN STATISTICS (Not for category II)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Simulation Techniques in Statistics	4	3	0	1	Class XII pass with Mathematics	knowledge of basic statistics

Learning Objectives

The learning objectives include:

- The objective of this course is to introduce the nuances of techniques involved in simulation studies as applicable to modeling of systems.
- The programming implementations will be completed using C/MATLAB/R/Python.

Learning Outcomes

After completing this course, students will possess skills concerning:

- Use of simulation to understand the behavior of real world systems.
- Ability to generate Pseudo-random numbers by the different methods.
- Random variable generation from theoretical distributions.
- Use of Monte Carlo methods and regenerative simulation.
- Ability to develop programs for the purpose of simulation.

SYLLABUS OF DSE- 6d

Theory

UNIT I (12 Hours)

Introduction to simulation

Introduction, Systems, Simulation models, Classification of simulation models; Simulation and Monte Carlo Methods, Pseudo-random number generators; Statistical tests of Pseudo-random numbers.

UNIT II (18 Hours)

Generation of random numbers

Random number generation. Random variable generation- Inverse transform method, Composition method, Acceptance-Rejection method. Generating from common statistical distributions- Discrete and Continuous. Simulation of random vectors, Generating Poisson processes and Markov chain.

UNIT III (15 Hours)

Applications of simulation

Discrete event simulation; Monte Carlo integration; Variance reduction techniques; Applications to statistical inference; Point Estimators, Confidence Intervals and hypothesis tests.

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

PRACTICAL/ LAB WORK – (30 hours)

List of Practical:

1. Pseudo random number generators.
2. Generation of $U(0, 1)$.
3. Problems based on statistical tests.
4. Application to standard statistical distributions (discrete and continuous):
 - (a) The inverse transforms method.

(b) Acceptance-Rejection method.

5. Problems based on Composition Method.
6. Problems based on Monte Carlo integration.
7. Problems based on Regenerative methods.

ESSENTIAL READINGS:

- Rubinstein, R.Y. (2017). Simulation and the Monte Carlo Methods, Wiley.
- Voss, J. (2014). An introduction to statistical computing: a simulation-based approach, Wiley series in computational statistics.
- Sheldon M. Ross (2022) Simulation, Sixth Edition, Elsevier Academic press publication.
- Averill M. Law and W. David Kelton (1991). Simulation modeling and analysis: McGraw-Hill, Inc., New York.

SUGGESTED READINGS:

- Reitman, J. (1971). Computer simulation Applications, John Wiley & Sons.
- Swarup, K. Gupta, P.K. and Mohan, M. (2014). Operations Research, 15th Ed, Sultan Chand & Sons.
- Fishman, G.S. (1996). Monte Carlo-Concepts, Algorithms and Applications, Springer.
- Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures, CRC Press. Boca Raton, FL.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

DISCIPLINE-SPECIFIC ELECTIVE COURSE-3C: ENVIRONMENTAL STATISTICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Environmental Statistics	4	3	0	1	Class XII pass with Mathematics	knowledge of sampling distributions and linear models

Learning Objectives

The learning objectives include:

- To study the role of Statistics in Environmental Science.