

ESSENTIAL READINGS:

- David, G.L. (2015). Investment Science, Oxford University Press(South Asian edition)
- Franke, J., Hardle, W.K. and Hafner, C.M. (2011). Statistics of Financial Markets: An Introduction, 3rd Ed., Springer Publications
- John C. Hull and Sankarshan Basu (2022) Options, Future and other derivatives, 11th edition, Pearson Indian edition.

SUGGESTIVE READINGS:

- Ovidiu Calin(2022): An informal introduction to stochastic calculus and its applications , second edition World Scientific
- Baxter, M., Rennie, A., & Rennie, A.J. (1996). Financial calculus: An introduction to derivative pricing. Cambridge university press.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

DISCIPLINE SPECIFIC ELECTIVE COURSE – 5B: ADVANCED DESIGN OF EXPERIMENTS
CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Advanced Design of Experiments	4	3	0	1	Class XII pass with Mathematics	Basic Knowledge of Design of Experiments

Learning Objectives

The learning objectives include:

- To design and conduct experiments.
- To analyse and interpret data.
- To construct designs.
- To apply experimental design techniques in real world problems.

Learning Outcomes:

After completing this course, students should be able to:

- Apply of ANOVA technique for two – way classification, fixed effect models with unequal number of observations per cell, Random effect models with one observation per cell and the concept of Mixed effects models.
- Design and analysis of incomplete block designs, understand the concepts of orthogonality, connectedness and balancing.
- Understand the concepts of finite fields and finite geometries and apply them in constructing MOLS, balanced incomplete block designs.
- Apply techniques of Response surface methodology and appreciate the concepts of orthogonality, rotatability and blocking.

- Understand the concept of mixture experiments that are useful in our daily life, food industry, chemical industry, pharmaceutical companies.
- Understand and apply Crossover designs in practical situations.

SYLLABUS OF DSE - 5b

Theory

UNIT I (6 hours)

Analysis of Variance

Fixed effect models (2-way classification with unequal number of observations per cell), Random effect models (2-way classification with one observation per cell) and the concept of Mixed effect models.

UNIT II (12 hours)

Incomplete Block Designs

Concepts of Connectedness, Orthogonality and Balance. Intra block analysis of General Incomplete Block design. B.I.B designs with and without recovery of inter block information.

UNIT III (13 hours)

Finite fields

Finite Geometries- Projective geometry and Euclidean geometry. Construction of complete set of mutually orthogonal Latin squares. Construction of B.I.B.D. using finite Abelian groups, MOLS, finite geometry and method of differences.

UNIT IV (14 hours)

Some Useful Designs

Response surface designs for first and second order models, concepts of orthogonality, rotatability and blocking. Mixture Experiments–models and designs, Cross-over designs

PRACTICAL/LAB. WORK (30 HOURS)

List of Practical:

1. Based on ANOVA for 2-way classification with unequal number of observations per cell under fixed effects model
2. Based on ANOVA 2-way classification with one observation per cell under random effects model
3. Based on ANOVA 2-way classification with one observation per cell under mixed effects model
4. Based on Intra block analysis of an IBD
5. Based on analysis of a BIBD with and without inter block analysis.
6. Based on response designs for first and second-order models.
7. Based on mixture designs,
8. Based on Cross-over designs.

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

ESSENTIAL READINGS:

- Goon, A.M., Gupta, M.K. and Dasgupta, B. (2016). An Outline of Statistical Theory, Vol 2, The world Press Private Limited.
- Das, M.N. and Giri, N.C. (2024). Design and Analysis of Experiments, Wiley Eastern Limited.
- Dey, A. (1986). Theory of Block Designs, John Wiley & Sons.
- Hinkelmann, K. and Kempthorne, O. (2022). Design and Analysis of Experiments, Vol. 2: Advanced Experimental Design, 9th edition, John Wiley & Sons.
- Bose, M. and Dey, A. (2009). Optimal Crossover Designs, World Scientific.

- Cornell, John A. (2002). Experiments with Mixtures, John Wiley & Sons.
- Myers, R. H. and Montgomery, D. C. (2016). Response Surface Methodology: Process and Product Optimization using Designed Experiments, 4 th edition John Wiley & Sons.

SUGGESTED READINGS

- Chakrabarti, M.C. (1962). Mathematics of Design and Analysis of Experiments, Asia Publishing House, Bombay.
- Dean, A. and Voss, D. (2017). Design and Analysis of Experiments, Springer 2nd edition. First Indian Reprint 2006.
- John, P.W.M. (1971). Statistical Design and Analysis of Experiments, Macmillan Co., New York.
- Kshirsagar, A.M. (1983). A Course in Linear Models, Marcel Dekker, Inc., N.Y.
- Montgomery, D. C. (2005). Design and Analysis of Experiments, 6th ed., John Wiley & Sons.
- Raghavarao, D. and Padgett, L. V. (2005). Block Designs: Analysis, Combinatorics, and Applications, World Scientific.
- Raghavarao, D. (1970). Construction and Combinatorial Problems in Design of Experiments, John Wiley & Sons.
- Wu, C. F. J. and Hamada, M. (2011). Experiments: Planning, Analysis and Parameter Design Optimization, John Wiley & Sons.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

DISCIPLINE SPECIFIC ELECTIVE COURSE –5C : ADVANCED THEORY OF BIOSTATISTICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Advanced theory of Biostatistics	4	3	0	1	Studied Biostatistics	Basic knowledge of survival analysis and survival models

Learning objectives:

The learning objectives include:

- Comparison of Survival in two groups
- Epidemiological Study and epidemic models.
- Independent and dependent risks in Competing risk theory.
- Concept of Relative Risk, Odds Ratio and Attributable Risk.
- Concept of Clinical trials.

Learning Outcomes:

After completing this course, students should have developed a clear understanding of: