

**COMMON POOL OF GENERIC ELECTIVES (GE) COURSES
OFFERED BY DEPARTMENT OF STATISTICS
CATEGORY-VI**

**GENERIC ELECTIVE -5A: INTRODUCTION TO STATISTICAL
LINEAR MODELS**

CREDIT DISTRIBUTION, ELIGIBILITY, AND PRE-REQUISITES OF THE COURSE

Course title & code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture s	tutorials	practical		
Introduction to Statistical Linear Models	4	3	0	1	Class XII pass with Mathematics	knowledge of sampling distributions and matrix theory

Learning Objectives:

learning objectives include:

- Developing a clear understanding of the fundamental concepts of linear models.
- Developing associated skills allowing the students to work effectively with them.

Learning Outcomes:

After completion of this course, students will have developed a clear understanding of:

- Theory and estimation of Linear Models.
- Gauss-Markov Theorem and its use.
- Distribution of quadratic forms.
- Simple and Multiple linear regression models and their applications.
- Fitting of these models to real or synthetic data, derivation of confidence and prediction intervals, and a sound scientific interpretation of the results.
- Techniques of Analysis of Variance under fixed effects model.
- Assessment of the quality of the fit using classical diagnostics,

**SYLLABUS OF GE-5A
THEORY**

UNIT I:**(12 hours)****Introduction:**

Statistical linear models and their classification, Estimability of linear parametric functions, Gauss-Markov set-up, Normal equations, and Gauss-Markov theorem: full rank case and non-full rank case (without proof).

UNIT II:**(8 hours)****Distribution of Quadratic Forms:**

Cochran's theorem (without proof), Necessary and sufficient conditions for the mutual independence of quadratic forms and for the mutual independence of a linear function and a quadratic form.

UNIT III:**(13 hours)****Regression Analysis:**

Simple and Multiple linear regression: Estimation and testing of hypothesis, confidence interval, bias in regression estimates, Lack of fit and pure error, Residuals, and their plot. Techniques for Variable selection. Polynomial Regression models: Orthogonal Polynomials.

UNIT IV:**(12 hours)****Analysis of Variance (ANOVA):**

The technique of ANOVA for one-way and two-way classifications with an equal number of observations per cell under a fixed effects model.

PRACTICAL/LABWORK -30 Hours**List of Practicals**

1. Estimability when X is a full rank matrix
2. Estimability when X is not a full rank matrix
3. Distribution of Quadratic forms
4. Simple Linear Regression
5. Multiple Regression
6. Tests for Linear Hypothesis
7. Bias in regression estimates
8. Lack of fit
9. Orthogonal Polynomials
10. Analysis of Variance of a one-way classified data.
11. Analysis of Variance of a two-way classified data with one observation per cell.
12. Analysis of Variance of two-way classified data with $m (> 1)$ observations per cell.

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

ESSENTIAL READINGS

- Montgomery, D. C., Peck, E. A. and Vining, G. G. (2012): Introduction to Linear Regression Analysis, 5th Ed., John Wiley and Sons.
- Rencher, A. C. and Schaalje, G. B. (2008): Linear Models in Statistics, 2nd Ed., John Wiley and Sons.
- Draper, N. R. and Smith, H. (1998): Applied Regression Analysis, 3rd Ed., John Wiley and Sons.

SUGGESTIVE READINGS:

- Weisberg, S. (2005): Applied Linear Regression, 3rd Ed., John Wiley and Sons.
- Rawlings, John O. Pantula Sastry G. Dickey, David A. (1998) Applied Regression Analysis: A Research Tool, Second Edition
- Bapat, R.B.(1993): Linear Algebra and Linear Models, Hindustan Book Agency.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

GENERIC ELECTIVE – 5b: STATSTICAL TECHNIQUES FOR QUALITY CONTROL

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Statistical Techniques for Quality Control	4	3	0	1	Class XII pass with Mathematics	knowledge of basic statistics

Learning Objectives

The learning objectives include:

- This course will help students to learn techniques and approach of SQC being used in industry to manufacture goods and services of high quality at low cost.
- This course will also give exposure to Sampling Inspection Plan.

Learning Outcomes:

After completing this course, students will develop a clear understanding of:

- Quality, Historical background, ISO standards.
- Statistical process control tools- Control charts for variables, attributes.
- Statistical product control tools- Sampling inspection plans, Dodge and Romig plans.

SYLLABUS OF GE-5b

Theory

UNIT I (10 hours)

Introduction, historical perspective and ISO Quality Standards

Quality: Definition, dimensions of quality, its concept, application and importance. Brief historical perspective of quality control and improvements. Quality system and standards: Introduction to ISO quality standards. Introduction to Process and Product Control, Statistical Process Control, Chance and Assignable causes of variation.