

14. Time Reversal Test and Factor Reversal Test

Essential Readings

- Croxton, Fredrick E, Cowden, Dudley J. and Klein, S. (1973): Applied General Statistics, 3rd edition, Prentice Hall of India Pvt. Ltd.
- Gun, A.M., Gupta, M.K. and Dasgupta, B. (2008). Fundamentals of Statistics, Vol. II, 9th Ed., World Press, Kolkata.
- Gupta, S.C. and Kapoor, V.K. (2014). Applied Statistics, 11th Ed., Sultan Chand.

Suggestive Reading

- Allen R.G.D. (1975): Index Numbers in Theory and Practice, Macmillan
- Mukhopadhyay, P. (1999). Applied Statistics, New Central Book Agency, Calcutta.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES: BASIC STATISTICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Basic Statistics	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives

The Learning Objectives of this course are as follows:

- To summarize the data and to obtain its salient features from the vast mass of original data.
- To understand the concepts of probability and its applications.
- To understand the concept of random variables, probability distributions and expectation..

Learning outcomes

After completion of this course, the students will be able to:

- Apply the concepts of statistical population and sample, variables and attributes.
- Present tabular and graphical representation of data based on variables.
- Measures of central tendency, Dispersion, Skewness and Kurtosis.
- Employ moments and their use in studying various characteristics of data.
- Employ correlation and regression analysis of bivariate data.

SYLLABUS OF GE

Theory

Unit - 1 (15 hours)

Elementary Statistics

Concepts of a statistical population and sample from a population, quantitative and qualitative data, nominal, ordinal and time-series data, discrete and continuous data. Presentation of data by tables and by diagrams, frequency distributions for discrete and continuous data, graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions (inclusive and exclusive methods).

Unit - 2 (15 hours)

Descriptive Statistics

Measures of location (or central tendency) and dispersion, moments, measures of skewness and kurtosis, cumulants. Bi-variate data: Scatter diagram, principle of least-squares and fitting of polynomials and exponential curves.

Unit - 3 (15 hours)

Correlation and Regression

Bivariate data: Definition, scatter diagram, simple, partial and multiple correlation (3 variables only), rank correlation. Simple linear regression, principle of least squares and fitting of polynomials and exponential curves.

Practical - 30 Hours

List of Practicals:

1. Problems based on graphical representation of data.
2. Problems based on measures of central tendency using raw data, grouped data and for change of origin and scale.
3. Problems based on measures of dispersion using raw data, grouped data and for change of origin and scale.
4. Problems based on combined mean and variance and coefficient of variation.
5. Problems based on Moments using raw data, grouped data and for change of origin and scale.
6. Problems based on relationships between moments about origin and central moments.
7. Problems based on Skewness and kurtosis.
8. Problems based on Karl Pearson correlation coefficient (with/without change of scale and origin).
9. Problems based on Lines of regression, angle between two lines of regression
10. Problems based on Spearman rank correlation.
11. Fitting of polynomials and exponential curves.

Essential Readings

- Goon, A. M., Gupta, M. K. and Dasgupta, B. (2003). An Outline of Statistical Theory (4th ed., Vol. I). World Press, Kolkata.

- Gupta, S. C. and Kapoor, V. K. (2021). Fundamentals of Mathematical Statistics (60th ed.). Sultan Chand and Sons.
- Hogg, R. V., Craig, A. T. and McKean, J. W. (2005). Introduction to Mathematical Statistics (6th ed.). Pearson Education.

Suggestive Reading

- Miller, I. and Miller, M. (2006). John E. Freund's Mathematical Statistics with Applications, 7th Ed., Pearson Education, Asia
- Elhance, D. N. , Elhance, V. and Agrawal, B. M. (2021), Kitab Mahal

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.