

**COMMON POOL OF GENERIC ELECTIVES (GE) COURSES
OFFERED BY DEPARTMENT OF STATISTICS
CATEGORY-IV**

GENERIC ELECTIVES: INTRODUCTION TO STATISTICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Introduction to Statistics	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives

The Learning Objectives of this course is as follows:

- Acquainting the students with descriptive data analysis.
- To introduce students to different measurement scales, qualitative and quantitative and discrete and continuous data.
- To help students to organise data into frequency distribution graphs, including bar graphs, histograms, polygons and ogives.
- Students should be able to understand the purpose for measuring central tendency, dispersion, skewness and kurtosis and should be able to compute them as well.
- Students should be able to understand theory of attributes, independence and association of attributes.

Learning Outcomes

The Learning Outcomes of this course are as follows:

- Introduction to Statistics, definitions and data classification
- Employ graphical displays of data, frequency distributions, analysing graphs.
- Apply numerical descriptions of data, measures of center tendency, measures of dispersion, skewness and kurtosis.
- Understand theory of attributes.

SYLLABUS OF GE

Theory

Unit – 1 **(15 hours)**

Introduction to Statistics and Data

Introduction: Definition and scope of Statistics, concepts of statistical population and sample. Data: quantitative and qualitative, attributes, variables, scales of measurement -nominal, ordinal, interval and ratio. Presentation: tabular and graphic, including histogram and ogives.

Unit – 2 **(15 hours)**

Descriptive Statistics

Measures of Central Tendency: Arithmetic mean, median, mode, geometric mean, harmonic mean, partition values. Measures of Dispersion: Range, quartile deviation, mean deviation, standard deviation, variance, coefficient of dispersion: coefficient of variation. Moments, Measure of skewness and kurtosis.

Unit – 3 **(15 hours)**

Theory of Attributes

Theory of Attributes: Consistency of data, independence of attributes, association of attributes, Yule's coefficient of association, coefficient of colligation.

Practical – 30 Hours

List of Practicals:

1. Tabular representation of data
2. Graphical representation of data using histogram
3. Graphical representation of data using ogives
4. Problems based on arithmetic mean
5. Problems based on geometric mean
6. Problems based on harmonic mean
7. Problems based on median
8. Problems based on mode
9. Problems based on partition values
10. Verifying the relationship between arithmetic mean, geometric mean and harmonic mean
11. Problems based on range and quartile deviation.
12. Problems based on mean deviation
13. Problems based on standard deviation and variance
14. Problems based on combined mean and combined variance
15. Problems based on coefficient of variation.
16. Problems based on moments,
17. Problems based on skewness
18. Problems based on kurtosis
19. Checking consistency of data.
20. Checking the independence of attributes
21. Measuring the association between the attributes

Essential Readings

- Goon, A.M., Gupta, M.K. and Dasgupta, B. (2002). Fundamentals of Statistics, 8th Ed. Vol. I & II, The World Press, Kolkata.
- Mood, A.M. Graybill, F.A. and Boes, D.C. (2007). Introduction to the Theory of Statistics,

3rd Ed., (Reprint), Tata McGraw-Hill Pub. Co. Ltd.

- Gupta, S.C., and Kapoor, V.K. (2014). Fundamental of Mathematical Statistics, 11th Ed., Sultan Chand.

Suggestive Reading

- Miller, I. and Miller, M. (2006). John E. Freund's Mathematical Statistics with Applications, 7th Ed., Pearson Education, Asia.
- Ross, Sheldon M. (2010): Introductory Statistics, 3rd Edition, Academic Press

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES: TIME SERIES ANALYSIS AND INDEX NUMBERS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Time Series Analysis and Index Numbers	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives

The Learning Objectives of this course are as follows:

- Introduce the concept of time series, its components, and their estimation.
- Introduce the application of time series.
- Introduce the concept, formulation, and application of index numbers.

Learning outcomes

After completion of this course, the students will be able to:

- Understand the concepts of time series and index numbers.
- Formulate, solve, and analyze the use of time series and index numbers for real-world problems.

SYLLABUS OF GE

Theory

Unit - 1 **(15 hours)**
Components of Time Series