

BSc. Physical Sciences

DISCIPLINE SPECIFIC CORE COURSE (DSC-1): Basic Concepts of Organic Chemistry

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Basic Concepts of Organic Chemistry	04	02	-	02	12 th Pass	NIL

Learning Objectives

The Learning Objectives of this course are as follows:

- The course is infused with the recapitulation of fundamentals of organic chemistry and the introduction of the concept of visualizing the organic molecules in a three-dimensional space.
- To establish the applications of these concepts, a study of diverse reactions through mechanisms is included.
- The constitution of the course strongly aids in the paramount learning of the basic concepts and their applications

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand and explain the differential behavior of organic compounds based on fundamental concepts learned.
- Understand the fundamental concepts of stereochemistry.
- Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.
- Learn and identify many organic reactions and their mechanisms including electrophilic addition, nucleophilic addition, nucleophilic substitution, electrophilic substitution and rearrangement reactions.

SYLLABUS OF DSC-1

UNIT – I Fundamentals of organic chemistry (6 Hours)

Types of Electronic displacements: Inductive effect, Resonance effect, Hyperconjugation, Electromeric Effect. Reactive intermediates and their stability: carbocations, free radicals, carbanions, benzyne, carbenes.

Acidity and basicity in organic compounds (comparison of carboxylic acids, alcohols, phenols, primary, secondary and tertiary aliphatic amines, aniline and its derivatives)

UNIT – II Stereochemistry (6 Hours)

Types of projection formulae: Flying Wedge Formula, Newmann, Sawhorse and Fischer representations and their interconversion.

Stereoisomerism: Concept of chirality (upto two carbon atoms). Configurational isomerism: geometrical and optical isomerism; enantiomerism, diastereomerism and meso compounds). Threo and erythro; D and L; *Cis-trans* nomenclature; CIP Rules: R/ S (for upto 2 chiral carbon atoms) and *E/Z* nomenclature (for upto two C=C systems).

Conformational isomerism with respect to ethane, butane and cyclohexane.

UNIT – III Types of Organic Reactions (Including reactions of alkenes, alkyl and aryl halides, alcohols, aldehydes, ketones) (18 Hours)

Electrophilic addition reactions

Electrophilic addition reaction (with respect to propene, propyne, 3,3-dimethyl-1-butene): Hydration, Addition of HX in the absence and presence of peroxide, Hydroboration oxidation, Addition of bromine (with stereochemistry).

Nucleophilic addition reactions

Nucleophilic addition reaction of carbonyl compounds: Addition of HCN, ammonia derivatives (Hydroxylamine, Hydrazine, Semicarbazide and 2,4-DNP), the addition of carbanion (Aldol condensation, Claisen Schmidt, Benzoin condensation, Perkin reaction, reactions involving Grignard reagent).

Elimination and Nucleophilic substitution reactions

Nucleophilic substitution reaction (S_N1 and S_N2) in alkyl halides (mechanisms with stereochemical aspect), alcohols (with nucleophiles like ammonia, halides, thiols, ambident nucleophiles (cyanide and nitrite ion)), ethers (Williamson ether synthesis), Elimination reaction (E1 & E2), elimination vs substitution (w.r.t. potassium t-butoxide and KOH); Nucleophilic aromatic substitution in aryl halides-elimination addition reaction w.r.t. chlorobenzene, including the effect of nitro group (on the ring) on the reaction. relative reactivity and strength of C-X bond in alkyl, allyl, benzyl, vinyl and aryl halides towards substitution reactions

Electrophilic substitution reactions

Electrophilic Aromatic substitution with mechanism (benzene)- sulphonation, nitration, halogenation, Friedel craft acylation :*o*-, *m*- and *p*- directive influence giving examples of toluene/nitrobenzene/ phenol/ aniline/ chlorobenzene.

Reactive intermediates and Rearrangement Reactions

Free radicals (Birch Reduction); *Carbocations* (Pinacol-Pinacolone, Wagner-Meerwein, Rearrangement, and Beckmann rearrangement); *Carbanions* (Michael Addition); *Carbenes* (Reimer-Tiemann).

Practical component (60 Hours)

1. Purification of an organic compound by crystallization (from water and alcohol) and distillation, Criteria of purity: Determination of M.P.
2. Determination of boiling point of liquid compounds. (Boiling point lower than and more than 100 °C by distillation and capillary method)
3. Detection of extra element
4. Preparations: (Mechanism of various reactions involved to be discussed).
 - a. Bromination of phenol/aniline.
 - b. 2,4-Dinitrophenylhydrazone of aldehydes and ketones
 - c. Semicarbazone of aldehydes/ ketones
 - d. Aldol condensation reaction using green method.
 - e. Bromination of Stilbene.
 - f. Acetanilide to p-Bromoacetanilide.

The above derivatives should be prepared using 0.5-1g of the organic compound. The solid samples must be collected and may be used for recrystallization and melting point.

Essential/recommended readings

Theory:

1. Sykes, P.(2003), **A Guide Book to Mechanism in Organic Chemistry**, 6th Edition Pearson Education.
2. Eliel, E. L. (2001), **Stereochemistry of Carbon Compounds**, Tata McGraw Hill.
3. Morrison, R. N.; Boyd, R. N., Bhattacharjee, S.K. (2010), **Organic Chemistry**, 7th Edition, Pearson Education.

Practical:

1. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. (2012), **Vogel's Textbook of Practical Organic Chemistry**, Pearson.
2. Mann, F.G.; Saunders, B.C. (2009), **Practical Organic Chemistry**, Pearson Education.
3. Dhingra, S; Ahluwalia V.K., (2017), **Advanced Experimental Organic Chemistry**, Manakin Press.

Suggestive readings

Theory:

1. Bahl, A; Bahl, B. S. (2019), **Advanced Organic Chemistry**, 22nd Edition, S. Chand.

Practical:

1. Pasricha, S., Chaudhary, A. (2021), **Practical Organic Chemistry: Volume I**, I K International Publishing House Pvt. Ltd., New Delhi.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.