

Category II

BSc. Physical Science with Chemistry as one of the Core Disciplines

DISCIPLINE SPECIFIC CORE COURSE – 4:

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Periodic Properties and Chemical Bonding DSC-4 Chemistry-II	4	2	0	2	Class Pass 12 th	----

Learning Objectives

The Learning Objectives of this course are as follows:

- The course discusses the periodicity in properties with reference to the s, p and d block, which is necessary in understanding their group chemistry.
- It provides basic knowledge about ionic, covalent and metallic bonding underlining the fact that chemical bonding is best regarded as a continuum between the three cases.
- It provides an overview of hydrogen bonding and van der Waal's forces which influence the melting points, boiling points, solubility and energetics of dissolution of compounds

Learning outcomes

By the end of the course, the students will be able to:

- Understand periodicity in ionization enthalpy, electron gain enthalpy, electronegativity and enthalpy of atomization.
- Understand variability in oxidation state, colour, metallic character, magnetic and catalytic properties and ability to form complexes
- Understand the concept of lattice energy using Born-Landé expression.
- Draw Born Haber Cycle and analyse reaction energies.
- Draw the plausible structures and geometries of molecules using VSEPR theory.
- Understand and draw MO diagrams (homo- & hetero-nuclear diatomic molecules). Understand the importance and applications of hydrogen and van der Waal bonding

SYLLABUS OF DSC-4

Unit I: Periodic Properties (12 Hours)

Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy, inert pair effect.

General group trends of s, p and d block elements with special reference to Ionization Enthalpy, Electron Gain Enthalpy, Electronegativity, Enthalpy of Atomization, oxidation state, colour, metallic character, magnetic and catalytic properties, ability to form complexes

UNIT II: Chemical Bonding (18 Hours)

Ionic Bonding: General characteristics of ionic bonding, Lattice Enthalpy and Solvation Enthalpy and their relation to stability and solubility of ionic compounds, Born-Lande equation for calculation of Lattice Enthalpy (no derivation), Born-Haber cycle and its applications, polarizing power and polarizability, Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent Bonding: Valence Bond Approach, Hybridization and VSEPR Theory with suitable examples, Concept of resonance and resonating structures in various inorganic and organic compounds, Molecular Orbital Approach: Rules for the LCAO method, bonding, nonbonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO⁺.

Brief introduction to Metallic Bonding, Hydrogen Bonding, van der Waal's Forces

PRACTICALS: 60 Hours

1. Preparation of standard solutions.
2. Estimation of Sodium carbonate with HCl
3. Estimation of oxalic acid by titrating it with KMnO₄.
4. Estimation of Mohr's salt by titrating it with KMnO₄.
5. Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄.
6. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal and external indicators.
7. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.
8. Chromatographic separation of mixture of metal ions Cu²⁺, Cd²⁺ or Ni²⁺, Co²⁺.
9. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using
 - a). internal indicator
 - b). external indicator
10. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃ .
11. Paper Chromatographic separation of mixture of metal ions
 - a). Cu²⁺ , Cd²⁺
 - b). Ni²⁺ , Co²⁺
12. Any suitable experiment (other than the listed ones) based upon neutralisation/redox reactions.

References:

Theory: