

Bachelor of Sciences (Physical Sciences)

Category II

BSc (Physical Sciences) with Chemistry as one of the Core Discipline

DISCIPLINE SPECIFIC CORE COURSE -7: Chemistry -III Chemical Energetics and Equilibria

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Chemical Energetics and Equilibria (DSC-7: Chemistry 03:	04	02	0	02	Passed Class 12 th with Physics, Chemistry, Mathematics	NIL

Learning objectives

The objectives of this course are as follows:

- To develop basic understanding of the chemical energetics, laws of thermodynamics and ionic equilibrium.
- to provides basic understanding of the behaviour of electrolytes and their solutions.
- To make students learn about the properties of ideal and real gases and deviation from ideal behavior

Learning outcomes

By studying this course, students will be able to:

- Explain the laws of thermodynamics, thermochemistry and equilibria.
- Use the concept of pH and its effect on the various physical and chemical properties of the compounds.
- Use the concepts learnt to predict feasibility of chemical reactions and to study the behaviour of reactions in equilibrium

SYLLABUS

UNIT-1: Chemical Energetics

(16 Hours)

Recapitulation of Intensive and extensive variables; state and path functions; Isolated, closed and open systems

First law

Concept of heat (Q), work (W), internal energy (U), and statement of first law; enthalpy (H), relation between heat capacities for ideal gas, Joule's experiment, calculations of Q, W, ΔU and ΔH for reversible expansion of ideal gases under isothermal conditions.

Thermochemistry

Enthalpy of reactions: standard states; enthalpy of neutralization, enthalpy of ionization enthalpy of hydration, enthalpy of formation and enthalpy of combustion, Integral enthalpy of solution, bond dissociation energy and bond enthalpy; Hess's law, Born Haber's cycle (NaCl/ KCl).

Second Law

Concept of entropy; statements of the second law of thermodynamics (Kelvin and Clausius). Calculation of entropy change for reversible processes (for ideal gases). Free Energy Functions: Gibbs and Helmholtz energy (Non-PV work and the work function); Free energy change and concept of spontaneity (for ideal gases).

Third Law

Statement of third law, qualitative treatment of absolute entropy of molecules (examples of NO, CO), concept of residual entropy

UNIT-2: Chemical Equilibrium

(4 Hours)

Criteria of thermodynamic equilibrium. Free energy change in a chemical reaction and equilibrium constant, exergonic and endergonic reactions with examples such conversion of ATP to ADP or vice versa, Le Chatelier's principle, relationship between K_p , K_c and K_x for reactions involving ideal gases.

UNIT-3: Ionic Equilibria

(10 Hours)

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, Ostwald's dilution law, ionization constant and ionic product of water, ionization of weak acids and bases, Degree of ionization, pH scale, common ion effect, Buffer solutions, Henderson-Hasselbach equation. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle

Practical Component:

60 Hours

(Laboratory periods: 15 classes of 4 hours each)

Chemical Energetics:

1. Determination of heat capacity of calorimeter.
2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
3. Determination of the enthalpy of ionization of acetic acid.

4. Determination of enthalpy of neutralization of acetic acid and ammonium hydroxide using Hess's law.
5. Determination of integral enthalpy of solution (both endothermic and exothermic) of salts.
6. Determination of enthalpy of hydration of Copper sulphate.

Ionic equilibria:

7. Preparation of buffer solutions: (i) Sodium acetate-acetic acid or (ii) Ammonium chloride-ammonium acetate. Measurement of the pH of buffer solutions and comparison of the values with theoretical values.
8. Study the effect of addition of HCl/NaOH on pH of the buffer solutions (acetic acid, and sodium acetate).
9. pH metric titration of strong acid with strong base,
10. pH metric titration of weak acid with strong base

References:

Theory:

1. Castellan, G. W. (2004), **Physical Chemistry**, Narosa.
2. Kapoor, K. L. (2015), **A Textbook of Physical Chemistry**, Vol 1, 6th Edition, McGraw Hill Education.
3. Kapoor, K. L. (2015), **A Textbook of Physical Chemistry**, Vol 2, 6th Edition, McGraw Hill Education.
4. Puri, B. R., Sharma, L. R. and Pathania M. S. (2020), **Principles of Physical Chemistry**, Vishal Publishing Co.

Practical:

1. Khosla, B. D.; Garg, V. C.; Gulati, A. (2015), **Senior Practical Physical Chemistry**, R. Chand & Co.
2. Kapoor, K. L. (2019), **A Textbook of Physical Chemistry**, Vol 7, 1st Edition, McGraw Hill Education.
3. Batra, S. K., Kapoor, V and Gulati, S. (2017) 1st Edition, **Experiments in Physical Chemistry**, Book Age series.

Additional Resources:

1. Mahan, B. H. (2013), **University Chemistry**, Narosa.
2. Barrow, G. M. (2006), **Physical Chemistry**, 5th Edition, McGrawHill.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.