

**BSC. (PHYSICAL SCIENCES)- CHEMISTRY COMPONENT
SEMESTER - IV**

DISCIPLINE SPECIFIC CORE COURSE CHEM-DSC -10: Chemistry- IV: Chemistry of Carboxylic Acids & their Derivatives, Amines and Heterocycles

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Chemistry of Carboxylic Acids & their Derivatives, Amines and Heterocycles DSC-10: Chemistry- IV	04	02	-	02	Class 12th with Physics, Chemistry, Mathematics	

Learning Objectives

The Learning Objectives of this course are as follows:

- To make students learn about the chemistry of carboxylic acids and their derivatives (aliphatic and aromatic)
- To give basic understanding of amines (aliphatic & aromatic), diazonium salts
- To provide basic understanding of heterocyclic systems.

Learning outcomes

By studying this course, students will be able to:

- Understand reactions of carboxylic acids, esters, amides, amines and diazonium salts
- Understand the concept of protection and deprotection.
- Use the synthetic chemistry learnt in this course to do functional group transformations.
- Gain theoretical understanding of chemistry of heterocyclic compounds.

Syllabus

Unit 1: Carboxylic Acids and their Derivatives (aliphatic and aromatic) (13 Lectures)

Preparation: Oxidation reactions of alcohols, aldehydes and ketones, Acidic and alkaline

hydrolysis of esters; Reactions: Hell-Volhard Zelinsky reaction,

Carboxylic acid derivatives (aliphatic): Preparation: Acid chlorides, anhydrides, esters and amides from acids and their interconversion, Claisen condensation. Reactions: Relative reactivities of acid derivatives towards nucleophiles, Reformatsky reaction, Perkin condensation.

Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of ethyl acetoacetate

Unit 2: Amines (aliphatic & aromatic) and Diazonium Salts

(Hours:10)

Amines

Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hoffmann bromamide reaction. Reactions: Hoffmann vs Saytzeff elimination, carbylamine test, Hinsberg test, reaction with HNO_2 , Schotten-Baumann reaction. Electrophilic substitution (case aniline): nitration, bromination, sulphonation; basicity of amines.

Diazonium salt

Preparation: from aromatic amines; Reactions: conversion to benzene, phenol and dyes.

Unit 3: Heterocyclic Compounds

(Hours: 7)

Introduction, classification, structure, nomenclature and uses. Preparation and properties of the following heterocyclic compounds with reference to electrophilic and nucleophilic substitution: furan, pyrrole, thiophene, and pyridine.

Practical Component:

Credits: 02

(Laboratory periods: 60)

1. Systematic qualitative analysis and preparation of suitable crystalline derivative (carboxylic acids, carbonyl, alcohols, phenols, amines (1° , 2° , 3°) and amides).
2. Preparation:
 - a. Acetylation of Aniline and Phenols.
 - b. Benzoylation of Aniline and phenols

The above derivatives should be prepared using 0.5-1g of the organic compound. The solid samples must be collected and may be used for recrystallization and melting point.

References:

Theory:

1. Morrison, R. N.; Boyd, R. N. **Organic Chemistry**, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
2. Finar, I. L. **Organic Chemistry** (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson

Education).

3. Ahluwalia, V.K.; Bhagat, P.; Aggarwal, R.; Chandra, R. (2005), **Intermediate for Organic Synthesis**, I.K. International.
4. Solomons, T. W. G.; Fryhle, C. B. ; Snyder, S. A. (2016), **Organic Chemistry**, 12th Ed., Wiley.

Practical:

1. Ahluwalia, V.K.; Dhingra, S.; Gulati, A. (2005), **College Practical Chemistry**, University Press (India) Ltd.
2. Ahluwalia, V.K.; Dhingra, S. (2004), **Comprehensive Practical Organic Chemistry: Qualitative Analysis**, University Press.
3. Pasricha, S., Chaudhary, A. (2021), **Practical Organic Chemistry: Volume I**, I K International Publishing House Pvt. Ltd., New Delhi.
4. Pasricha, S., Chaudhary, A. (2021), **Practical Organic Chemistry: Volume II**, I K International Publishing House Pvt. Ltd., New Delhi.
5. Vogel, A.I. (1972), **Textbook of Practical Organic Chemistry**, Prentice-Hall.
6. Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. (1989), **Vogel's Textbook of Quantitative Chemical Analysis**, John Wiley and Sons.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.