

POOL OF DISCIPLINE SPECIFIC ELECTIVES FOR SEMESTER -III/IV/V/VI

SEMESTER III

DISCIPLINE SPECIFIC ELECTIVE COURSE CHEM-DSE -1: Main Group Chemistry

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical / Practice		
Chem-DSE 1: Main Group Chemistry	04	02	-	02	Class XII with Science	

Learning Objectives

The Learning Objectives of this course are as follows:

- To provide basic understanding of the fundamental principles of metallurgy through study of the different methods of extraction and refining of metals.
- To illustrate the diversity and fascinating aspects of inorganic chemistry through the study of structure, properties and utilities of s- and p-block elements and their compounds.

Learning outcomes

By studying this course, students will be able to:

- Understand the basis of occurrence of metals in nature and the methods that can be applied on minerals to extract the metals from them.
- Explain the importance of free energy of formation of oxides with the choice of reducing agents for extracting the metals.
- Understand and explain the importance of refining of metals and the choice of a refining procedure.
- Explain the group trends observed for different properties of s and p block elements.
- Explain the structures and the bonding of compounds of s- and p-block elements
- Explain the unique properties of alkali metals and some other main group elements
- Understand and explain the polymerization mechanism of inorganic ions to generate inorganic polymers and the difference between organic and inorganic polymers.

Syllabus

Unit 1: General Principles of Metallurgy**(Hours: 6)**

Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon and carbon monoxide as reducing agent. Electrolytic Reduction, Hydrometallurgy with reference to cyanide process for silver and gold. Methods of purification of metals: Electrolytic process, Van Arkel-De Boer process, Zone refining.

Unit 2: General Properties**(4 Hours)**

General group trends of s- and p-block elements with special reference to melting and boiling points, flame colour, metallic character and complex formation tendency, diagonal relationship and anomalous behaviour of first member of each group, Alkali metal solutions in liquid ammonia

Unit 3: Structure, Bonding, Properties and Applications**(Hours: 16)**

Structure, bonding, properties (Acidic/Basic nature, stability, ionic/covalent nature, oxidation/reduction, hydrolysis, thermal stability) and applications of the following:

Crown Ethers and cryptates of Alkali metals

Hydrides: hydrides of Group 13 (only diborane), Group 14, Group 15 (EH_3 where E = N, P, As, Sb, Bi), Group 16 and Group 17.

Oxides: Oxides of nitrogen, phosphorus and sulphur.

Oxoacids: oxoacids of phosphorus, sulphur and chlorine

Halides of phosphorus

Unit 4: Inorganic Polymers**(4 Hours)**

Preparation, properties, structure and uses of the following:

Borazine, Silicates and Silicones.

Practicals**Credits:02****(Laboratory periods:60)**

Qualitative semi-micro analysis of mixtures containing 2 anions and 2 cations (preferably 7-8 mixtures). Emphasis should be given to the understanding of the chemistry of different reactions.

The following radicals are suggested:

CO_3^{2-} , NO_2^- , S^{2-} , SO_3^{2-} , SO_4^{2-} , $\text{S}_2\text{O}_3^{2-}$, CH_3COO^- , F^- , Cl^- , Br^- , I^- , NO_3^- , BO_3^{3-} , $\text{C}_2\text{O}_4^{2-}$, PO_4^{3-} , NH_4^+ , K^+ , Pb^{2+} , Cu^{2+} , Cd^{2+} , Bi^{3+} , Sn^{2+} , Sb^{3+} , Fe^{3+} , Al^{3+} , Cr^{3+} , Zn^{2+} , Mn^{2+} , Co^{2+} , Ni^{2+} , Ba^{2+} , Sr^{2+} , Ca^{2+} , Mg^{2+} .

The mixtures may contain combination of anions/one interfering anion.

Spot tests should be preferred wherever applicable.

References:**Theory:**

1. Lee, J.D.; (2010), **Concise Inorganic Chemistry**, Wiley India.
2. Huheey, J.E.; Keiter, E.A.; Keiter; R. L.; Medhi, O.K. (2009), **Inorganic Chemistry- Principles of Structure and Reactivity**, Pearson Education.
3. Douglas, B.E.; McDaniel, D.H.; Alexander, J.J. (1994), **Concepts and Models of Inorganic Chemistry**, John Wiley & Sons.
4. Atkins, P.W.; Overton, T.L.; Rourke, J.P.; Weller, M.T.; Armstrong, F.A. (2010), Shriver and Atkins **Inorganic Chemistry**, 5th Edition, Oxford University Press.
5. Housecraft, E. H.; Sharpe, A.G. (2018), **Inorganic Chemistry**, 5th Edition, Pearson.
6. F.A. Cotton & G. Wilkinson (1999), **Advanced Inorganic Chemistry**, 6th Edition, John Wiley & Sons.

Practicals:

1. Vogel, A.I. (1972), **Qualitative Inorganic Analysis**, Longman.
2. Svehla, G. (1996), **Vogel's Qualitative Inorganic Analysis**, Prentice Hall.
3. Dua A, Manav N, **Practical Inorganic Chemistry**, (2017), Manakin Press.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.