

SEMESTER VI

DISCIPLINE SPECIFIC ELECTIVE COURSE CHEM-DSE -10: Analytical Methods in Chemistry

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Chem-DSE-10: Analytical Methods in Chemistry	04	02	-	02	Class XII with Science	

Learning Objectives

The Learning Objectives of this course are as follows:

- To familiarize students with the concepts of sampling, errors in analysis, accuracy, precision and introduce basics of statistical analysis.
- To introduce students to important instrumentation and separation techniques routinely used in the laboratory analysis of samples. The experiments expose students to instrumentation and they learn to detect and separate analytes in a mixture.

Learning outcomes

By studying this course, students will be able to:

- Understand various sources of errors in chemical analysis.
- Learn about methods to minimize error.
- Understand basic principle of instrumentation (Flame Photometer, UV-vis spectrophotometer, Atomic Absorption spectrophotometer).
- Apply the principles of analysis and instrumentation to analyse soil samples, soft drinks and synthetic mixtures provided in the laboratory.
- Learn basic principles of separation techniques (chromatography and solvent extraction) and apply them to separate mixtures.
- Understand principles of Gravimetric analysis and apply them in determination of Ni^{2+} and Al^{3+}
- Analyse samples independently in the laboratory.

Syllabus

Unit 1: Errors in Chemical Analysis

(Hours: 8)

Types of errors, Accuracy and Precision, Absolute and relative uncertainty, propagation of uncertainty. The Gaussian distribution, mean and standard deviation, confidence intervals.

Unit 2: Optical Methods of Analysis

(Hours: 10)

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, Beer's-Lambert Law.

UV-Vis Spectrophotometry

Basic principles of instrumentation for single and double beam instruments. Determination of concentration of unknown compounds, composition of metal complexes using Job's method of continuous variation and mole ratio method.

Flame Atomic Absorption and Emission Spectroscopy

Basic principles of instrumentation. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal.

Application of these techniques in analysis of samples.

Unit 3: Separation Techniques

(Hours: 12)

Solvent extraction

Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation. Technique of extraction: batch, continuous and counter current extractions.

Chromatography

Principles of Chromatographic separations, Classification of Chromatographic techniques, Thin Layer Chromatography, Column Chromatography, efficiency of separation (Resolution, Efficiency of Resolution, Plate Height) Application of these techniques in analysis of samples.

Practical Component

Credits:02

(Laboratory periods:60)

1. Analysis of soil.
 - a. Determination of pH of soil, Total soluble salts, carbonate and bicarbonate, calcium and magnesium by titration.
 - b. Estimation of Potassium, calcium and magnesium by flame photometry.
2. Separation of constituents of leaf pigments by thin layer chromatography.
3. Determination of the ion exchange capacity of an anion exchange resin.
4. Determination of the ion exchange capacity of a cation exchange resin.
5. Separation of amino acids by ion exchange chromatography.

6. Spectrophotometric analysis of Co^{2+} and Ni^{2+} ions in a mixture.
7. Spectrophotometric analysis of Caffeine and Benzoic acid in a soft drink.
8. Gravimetric estimation of Ni^{2+} using Dimethylglyoxime or Al^{3+} using oxine.

References:

Theory:

1. Willard, H.H. (1988), **Instrumental Methods of Analysis**, 7th Edition, Wadsworth Publishing Company.
2. Christian, G.D. (2004), **Analytical Chemistry**, 6th Edition, John Wiley & Sons, New York.
3. Harris, D. C. (2007), **Quantitative Chemical Analysis**, 6th Edition, Freeman.
4. Skoog, D.A.; Holler F.J.; Nieman, T.A. (2005), **Principles of Instrumental Analysis**, Thomson Asia Pvt. Ltd.
5. Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. (1989), **Vogel's Textbook of Quantitative Chemical Analysis**, John Wiley and Sons.

Practicals:

1. Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. (1989), **Vogel's Textbook of Quantitative Chemical Analysis**, John Wiley and Sons.
2. Christian, G.D. (2004), **Analytical Chemistry**, 6th Edition, John Wiley & Sons, New York.
3. Harris, D. C. (2007), **Quantitative Chemical Analysis**, 6th Edition, Freeman.
4. Skoog, D.A.; Holler F.J.; Nieman, T.A. (2005), **Principles of Instrumental Analysis**, Thomson Asia Pvt. Ltd.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.