

DISCIPLINE SPECIFIC ELECTIVE COURSE CHEM-DSE 3: Chemistry of Colloids and Adsorption

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Chem-DSE 3: Chemistry of Colloids and Adsorption	04	02	-	02	Class XII with Science	

Learning Objectives

The Learning Objectives of this course are as follows:

- To develop basic concepts of colloids and colloidal phenomenon.
- Preparation and characterization of sols, understanding about applications of colloid in food, petroleum and cosmetic industry.
- Basic understanding of adsorption, types of adsorption, chemistry of adsorption and its applications.

Learning outcomes

By studying this course, students will be able to:

- Understand colloid solutions, preparation of sols.
- Understand the concept of Electrical double layer, charge on colloidal particles.
- Characterize the colloids sols, learn colloid phenomenon like Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation.
- Understand adsorption, types of adsorption. Characteristics, factors affecting adsorption and its applications

Syllabus

Unit 1: Colloidal State

(Hours: 8)

Distinction among true solutions, colloids and suspensions, components of Colloids, classification of colloids - lyophilic, lyophobic; Preparation methods and properties of lyophobic solutions, Hydrophile-lyophile balance (HLB), multi molecular, macromolecular and associated colloids (micelles formation), Schulze -Hardy law.

Unit 2: Preparation and Properties of Colloids

(Hours: 14)

Methods of preparation of colloids, Tyndall effect, Brownian movement, coagulation and flocculation; electrophoresis, dialysis.

Emulsification by surfactants, selection of surfactants as emulsifying agent, colloidal phenomenon in food chemistry, Protein based functional colloids.

Unit 3: Surface Chemistry

(Hours: 8)

Adsorption, Distinction between adsorption and absorption, Types of Adsorption, Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids - Freundlich and Langmuir adsorption isotherms, Adsorption from solutions. Applications of Adsorption phenomenon in living systems.

Practical component

Credits: 02

(Laboratory periods: 60)

1. Preparation of Colloidal Sols of following
 - a. Egg Albumin
 - b. Starch /Gum
 - c. Ferric chloride
 - d. Aluminum hydroxide
 - e. Antimony Sulphide
2. To find out the precipitation values of Antimony Sulphide sol by using monovalent, bivalent and trivalent cations.
3. To verify the Schulze -Hardy law.
4. To verify the Freundlich's Adsorption isotherms.
5. Study of adsorption of HAc on charcoal and prove the validity of Langmuir's adsorption isotherms
6. Study of adsorption of Oxalic acid on charcoal and prove the validity of Langmuir's adsorption isotherms.

References:

Theory:

1. Puri B. R., Sharma L. R. and Pathania M.S., (2020) Principles of Physical Chemistry, Vishal Publishing Co. Jalandhar, Punjab, India.
2. Kapoor K L, **Text Book of Physical Chemistry, Vol. 4**, McGraw Hill Education (India) Private Limited, Chennai, India.
3. Evans D F and Wennerström's, **The Colloidal Domain**, Second Edition, John Wiley & Sons Inc.
4. Adamson A. W. and Gast A., **Physical Chemistry of Surfaces** (Main text) Sixth Edition, John Wiley & Sons Inc.
5. Berg J. C., **An Introduction to Interfaces and Colloids**, World Scientific Publishing Co., Inc. New Jersey.
6. Israelachvili J. N., **Intermolecular and Surface Forces**, Elsevier Inc.

Practical:

1. Giri, S; Bajpai, D.N.; Pandey, O.P. **Practical Chemistry**, S. Chand Limited.
2. Khosla, B.D.; Garg, V.C.; Gulati, A.(2015), **Senior Practical Physical Chemistry**, R. Chand & Co.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.