

DSE – 04 (b): Internet of Things (IoT)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Internet of Things(IoT)	4	2	0	2	Class XII pass	DSC-01

Learning Objectives

1. To make students understand what IoT is and how it works today
2. To make students aware of different applications of IoT.
3. To introduce students to technologies and smart systems under IoT

Learning Outcomes:

1. Able to understand the application areas of IOT .
2. Able to realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks
3. Able to understand building blocks of Internet of Things and characteristics.

UNIT-I**(5 Hours)**

Introduction to IoT: Definition and Characteristics, Physical Design Things- Protocols, Logical Design- Functional Blocks, Communication Models- Communication APIs- Introduction to measure the physical quantities.

UNIT-II**(5 Hours)**

IoT Enabling Technologies - Wireless Sensor Networks, Cloud Computing Big Data Analytics, Communication Protocols- Embedded System- IoT Levels and Deployment Templates.

UNIT-III**(10 Hours)**

Introduction to Smart Systems using IoT: IoT Design Methodology- IoT Boards (Raspberry Pi, Arduino) and IDE - Case Study: Weather Monitoring- Logical Design using Python, Data types & Data Structures- Control Flow, Functions- Modules- Packages, File Handling - Date/Time Operations, Classes- Python Packages of Interest for IoT.

UNIT-IV**(5 Hours)**

Sensing and Sensors: Wireless Sensor Networks, Challenges and Constraints, Introduction – Fundamentals of MAC Protocols – MAC protocols for WSN – Sensor MAC Case Study.

UNIT-V**(5 Hours)**

Applications: Home Automation, Smart Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health and Lifestyle, IoT and M2M

References:

1. Michael Miller, *The Internet of Things*, Pearson Education, 2015.
2. Arshdeep Bahga and Vijay Madisetti, *Internet of Things: Hands-on Approach*, Hyderabad University Press, 2015.
3. Greengard, Samuel. *The internet of things*. MIT press, 2015.

List of Practicals: (60 Hours)

1. Familiarization with Arduino/Raspberry Pi and perform necessary software installation.
2. To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.
3. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.
4. To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.
5. To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.
6. To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.
7. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
8. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.
9. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thingspeak cloud.
10. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thing speak cloud.
11. To install MySQL database on Raspberry Pi and perform basic SQL queries.
12. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.
13. Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for temperature data and print it.
14. Write a program to create TCP server on Arduino/Raspberry Pi and respond with humidity data to TCP client when requested.
15. Write a program to create UDP server on Arduino/Raspberry Pi and respond with humidity data to UDP client when requested.