

1. Search the research papers related to the chosen problem using academic search engines like Google Scholar, Scopus search, Web of Science database, etc.
 - a. Evaluate the venue of the source of research paper - Journals using citation metrics like CiteScore, SCImago Journal Rank (SJR), Source Normalized Impact per Paper (SNIP) etc., Conferences venues are evaluated using indexing information, Core Ranking etc.
 - b. Summarize the reviewed papers in a tabular format with columns: Paper Title, Author(s), Year, Key Findings, and Citation Count.
 - c. Explore reference management tools like Mendley / Zotero / EndNote to organize, store, and manage references.
2. Practice data analysis techniques taught in the class and identify a suitable technique required to solve the chosen research problem.
3. Write the research report and prepare to write the research paper.
 - a. Choose a document writing software and prepare the report as per the format given by the teacher.
 - b. Use the plagiarism check tool to assess the similarity index of the report and ensure that it is less than 10%.
 - c. Explore the journal finder tools available for the publishers and select a suitable journal to submit the manuscript

DSE – 18
Robotics

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Robotics	4	3	0	1	Class XII pass with Mathematics	DSC-03(Mathematics for Computing-I), DSC-06(Mathematics for Computing-II)

Learning Objectives:

1. *To teach students the fundamentals of creating and programming a robot to interact with its environment.*
2. *To perform basic tasks involving motion, sensor data and decision-making.*

Learning Outcomes:

1. *Explain the fundamentals of robotics and its components*

2. *Explain sensors and actuators in robotics*
3. *Know about various communication modes used in robotics*

UNIT-I

(7 Hours)

Programming Environments: Integrated Development Environment (IDE) for AVR microcontrollers, free IDEs like AVR studio, win AVR. Installing and configuring For Robotic programming, In System Programmer (ISP), loading programs on Robot.

UNIT-II

(8 Hours)

Actuators: DC Motors, Gearing and Efficiency, Servo Motors, Stepper motors, Motor control and its implementations.

UNIT-III

(15 Hours)

Sensors and LCD interfacing: White line sensors, IR Range sensor of different range, Analog IR proximity sensors, Analog directional light intensity sensors, position encoder, Servo mounted sensor pod/camera pod, wireless color camera, Ultrasound scanner, Gyroscope and accelerometer, Magnetometer, GPS receiver, Battery voltage sensing, current sensing.

LCD interfacing with the robot (2 x 16 Characters LCD), other indicators: Indicator LEDs.

UNIT-IV

(15 Hours)

Timer / counter operations: PWM generation, Motor velocity control, servo control, velocity calculation and motor position control, event scheduling.

Communication: Wired RS232 (SERIAL) communication, Wireless ZigBee Communication, USB communication, Simplex infrared communication (IR remote to robot).

References:

1. *Saha, S.K, Introduction to robotics, 2 nd edition, McGraw-Hill Education, New Delhi, 2014*
2. *R.K Mittal, I.J Nagrath, -Robotics & Controll, Tata McGraw & Hills, 2015.*

Practicals:

1. Blink an LED using AVR microcontroller.
2. Run a DC motor in forward and reverse directions using motor driver.
3. Detect obstacle using IR sensor and turn ON an LED.
4. Display IR sensor values on a 16x2 LCD.
5. Control the angle of a servo motor using PWM.
6. Measure the speed of a DC motor using an encoder and display it.