

DSE-03 (a): Distributed Systems

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Distributed Systems	4	4	0	0	Class XII	DSC-09

Learning objectives:

1. To provide hardware and software issues in modern distributed systems.
2. To get knowledge in distributed architecture, naming, synchronization, consistency and replication, fault tolerance, security, and distributed file systems.
3. To analyze the current popular distributed systems such as peer-to-peer (P2P) systems will also be analyze

Learning Outcomes:

1. To understand the foundations of distributed systems.
2. To learn issues related to clock Synchronization and the need for global state in distributed systems.
3. To learn distributed mutual exclusion and deadlock detection algorithms.

UNIT-I

(15 hours)

Characterization of Distributed Systems: Introduction, Examples of distributed Systems, Resource sharing and the Web Challenges. Architectural models, Fundamental Models. Theoretical Foundation for Distributed System: Limitation of Distributed system, absence of global clock, shared memory, Logical clocks, Lamport's & vectors logical clocks. Concepts in Message Passing Systems: causal order, total order, total causal order, Techniques for Message Ordering, Causal ordering of messages, global state, and termination detection.

UNIT-II

(15 hours)

Distributed Mutual Exclusion: Classification of distributed mutual exclusion, requirement of mutual exclusion theorem, Token based and non-token based algorithms, performance metric for distributed mutual exclusion algorithms. Distributed Deadlock Detection: system model, resource Vs communication deadlocks, deadlock prevention, avoidance, detection & resolution, centralized dead lock detection, distributed dead lock detection, path pushing algorithms, edge chasing algorithms.

UNIT -III

(15 hours)

Agreement Protocols: Introduction, System models, classification of Agreement Problem, Byzantine agreement problem, Consensus problem, Interactive consistency Problem, Solution to Byzantine Agreement problem, Application of Agreement problem, Atomic Commit in Distributed Database system. Distributed Resource Management: Issues in distributed File Systems, Mechanism for building distributed file systems, Design issues in Distributed Shared Memory, Algorithm for Implementation of Distributed Shared Memory.

UNIT-IV**(15 hours)**

Failure Recovery in Distributed Systems: Concepts in Backward and Forward recovery, Recovery in Concurrent systems, obtaining consistent Checkpoints, Recovery in Distributed Database Systems. **Fault Tolerance:** Issues in Fault Tolerance, Commit Protocols, Voting protocols, Dynamic voting protocols

References

1. *Singhal&Shivaratri, "Advanced Concept in Operating Systems", McGraw Hill*
2. *Ramakrishna,Gehrke, " Database Management Systems ", McGraw Hill*
3. *Vijay K.Garg Elements of Distributed Computing, Wiley*
4. *Coulouris, Dollimore, Kindberg, "Distributed System: Concepts and Design", Pearson Education*
5. *Tenanuanbaum, Steen, " Distributed Systems ", PHI.*