

DSE-03 (b): Artificial Intelligence

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Artificial Intelligence	4	3	0	1	Class XII	DSC-03 DSC-06

Learning Objectives:

1. Study the concepts of Artificial Intelligence.
2. Learn the methods of solving problems using Artificial Intelligence.
3. Learn the knowledge representation techniques, reasoning techniques and planning
4. Introduce the concepts of Expert Systems and machine learning.

Learning Outcomes:

1. Identify problems that are amenable to solutions by specific AI methods.
2. Appreciate the utility of different types of AI agents.
3. Apply different informed search techniques for solving real world problems.
4. Use knowledge representation techniques for AI systems..
5. Understand human level, data driven and end to end approaches to AI.

UNIT-I

(10 Hours)

Introduction to Artificial Intelligence: background and applications, Turing test, Weak AI, Strong AI, Narrow AI, Artificial General Intelligence, Super AI, rational agent approaches to AI, introduction to intelligent agents, their structure, behavior and task environment , the Present and the Future of AI.

UNIT-II

(12 Hours)

Problem Solving and Searching Techniques: Problem characteristics, production systems, control strategies, breadth-first search, depth-first search, hill climbing and its variations, heuristics search techniques: best-first search, A* algorithm, constraint satisfaction problem, means-end analysis, introduction to game playing, min-max and alpha-beta pruning algorithms.

UNIT-III

(12 Hours)

Knowledge Representation: Propositional logic, First-Order Predicate logic, resolution principle, unification, semantic nets, conceptual dependencies, frames, and scripts, production rules, Introduction to Programming in Logic (PROLOG).

UNIT-IV

(11 Hours)

Understanding Natural Languages: Components and steps of communication, the contrast between formal and natural languages in the context of grammar, Chomsky hierarchy of grammars, parsing, and semantics, Parsing Techniques, Context-Free and Transformational

Grammars, Recursive and Augmented transition nets.

References:

1. *Stuart J. Russell and Peter Norvig, Artificial Intelligence - A Modern Approach, Pearson, 4th edition, 2020.*
2. *Elaine Rich and Kelvin Knight, Artificial Intelligence, 3 rd edition, Tata McGraw Hill, 2010.*
3. *Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley, Pearson Education, 4th edition, 2012.*

List of Practicals: **(30 hours)**

1. Write a prolog program to calculate the sum of two numbers.
2. Write a Prolog program to implement $\text{max}(X, Y, M)$ so that M is the maximum of two numbers X and Y .
3. Write a program in PROLOG to implement $\text{factorial}(N, F)$ where F represents the factorial of a number N .
4. Write a program in PROLOG to implement $\text{generate_fib}(N, T)$ where T represents the N th term of the fibonacci series.
5. Write a Prolog program to implement GCD of two numbers.
6. Write a Prolog program to implement $\text{power}(\text{Num}, \text{Pow}, \text{Ans})$: where Num is raised to the power Pow to get Ans .
7. Prolog program to implement $\text{multi}(N1, N2, R)$: where $N1$ and $N2$ denotes the numbers to be multiplied and R represents the result.
8. Write a Prolog program to implement $\text{memb}(X, L)$: to check whether X is a member of L or not.
9. Write a Prolog program to implement $\text{conc}(L1, L2, L3)$ where $L2$ is the list to be appended with $L1$ to get the resulted list $L3$.
10. Write a Prolog program to implement $\text{reverse}(L, R)$ where List L is original and List R is reversed list.
11. Write a program in PROLOG to implement $\text{palindrome}(L)$ which checks whether a list L is a palindrome or not.
12. Write a Prolog program to implement $\text{sumlist}(L, S)$ so that S is the sum of a given list L .
13. Write a Prolog program to implement two predicates $\text{evenlength}(\text{List})$ and $\text{oddlength}(\text{List})$ so that they are true if their argument is a list of even or odd length respectively.
14. Write a Prolog program to implement $\text{nth_element}(N, L, X)$ where N is the desired position, L is a list and X represents the N th element of L .
15. Write a Prolog program to implement $\text{maxlist}(L, M)$ so that M is the maximum number in the list.
16. Write a prolog program to implement $\text{insert_nth}(I, N, L, R)$ that inserts an item I into N th position of list L to generate a list R .
17. Write a Prolog program to implement $\text{delete_nth}(N, L, R)$ that removes the element on N th position from a list L to generate a list R .
18. Write a program in PROLOG to implement $\text{merge}(L1, L2, L3)$ where $L1$ is first ordered list and $L2$ is second ordered list and $L3$ represents the merged list.